Suppr超能文献

端到端可微分蛋白质结构学习

End-to-End Differentiable Learning of Protein Structure.

机构信息

Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Cell Syst. 2019 Apr 24;8(4):292-301.e3. doi: 10.1016/j.cels.2019.03.006. Epub 2019 Apr 17.

Abstract

Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1-2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design.

摘要

从序列预测蛋白质结构是生物化学的核心挑战。共进化方法显示出前景,但明确的序列到结构的映射仍然难以捉摸。深度学习的进步用可微分的模型替代了复杂的、人工设计的流水线,并进行端到端优化,这表明类似地重新制定结构预测具有潜在的好处。在这里,我们引入了一个用于蛋白质结构学习的端到端可微分模型。该模型通过几何单元来耦合局部和全局蛋白质结构,这些几何单元在不违反局部共价化学的情况下优化全局几何形状。我们使用两个具有挑战性的任务来测试我们的模型:在没有共进化数据的情况下预测新的折叠结构,以及在没有结构模板的情况下预测已知的折叠结构。在第一个任务中,该模型达到了最先进的准确性,在第二个任务中,它的误差在 1-2Å 以内;使用共进化和实验模板的竞争方法已经经过多年的改进,因此可微分方法很可能还有很大的改进空间,其应用范围从药物发现到蛋白质设计。

相似文献

1
End-to-End Differentiable Learning of Protein Structure.端到端可微分蛋白质结构学习
Cell Syst. 2019 Apr 24;8(4):292-301.e3. doi: 10.1016/j.cels.2019.03.006. Epub 2019 Apr 17.
3
Toward the solution of the protein structure prediction problem.朝着解决蛋白质结构预测问题的方向努力。
J Biol Chem. 2021 Jul;297(1):100870. doi: 10.1016/j.jbc.2021.100870. Epub 2021 Jun 11.
5
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.基于超深度学习模型的蛋白质接触图从头精确预测
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.
6
Machine learning in protein structure prediction.机器学习在蛋白质结构预测中的应用。
Curr Opin Chem Biol. 2021 Dec;65:1-8. doi: 10.1016/j.cbpa.2021.04.005. Epub 2021 May 18.

引用本文的文献

3
Role of artificial intelligence in revolutionizing drug discovery.人工智能在变革药物研发中的作用。
Fundam Res. 2024 May 9;5(3):1273-1287. doi: 10.1016/j.fmre.2024.04.021. eCollection 2025 May.

本文引用的文献

4
Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks.利用深度卷积神经网络增强进化耦合。
Cell Syst. 2018 Jan 24;6(1):65-74.e3. doi: 10.1016/j.cels.2017.11.014. Epub 2017 Dec 20.
9
Biological and functional relevance of CASP predictions.半胱天冬酶(CASP)预测的生物学及功能相关性。
Proteins. 2018 Mar;86 Suppl 1(Suppl Suppl 1):374-386. doi: 10.1002/prot.25396. Epub 2017 Oct 17.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验