Banerjee Sudipto
University of California Los Angeles, Los Angeles, USA.
Sankhya Ser A. 2024 Nov;86(Suppl 1):95-124. doi: 10.1007/s13171-024-00348-8. Epub 2024 Apr 8.
This article attempts to offer some perspectives on Bayesian inference for finite population quantities when the units in the population are assumed to exhibit complex dependencies. Beginning with an overview of Bayesian hierarchical models, including some that yield design-based Horvitz-Thompson estimators, the article proceeds to introduce dependence in finite populations and sets out inferential frameworks for ignorable and nonignorable responses. Multivariate dependencies using graphical models and spatial processes are discussed and some salient features of two recent analyses for spatial finite populations are presented.
本文试图在假定总体中的单元呈现复杂相关性的情况下,对有限总体数量的贝叶斯推断提供一些观点。文章首先概述贝叶斯分层模型,包括一些能产生基于设计的霍维茨 - 汤普森估计量的模型,接着引入有限总体中的相关性,并阐述可忽略和不可忽略响应的推断框架。讨论了使用图形模型和空间过程的多元相关性,并介绍了近期针对空间有限总体的两项分析的一些显著特征。