Suppr超能文献

在用于多标签航空图像分类的混合卷积和双向长短期记忆网络中反复探索类别注意力。

Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification.

作者信息

Hua Yuansheng, Mou Lichao, Zhu Xiao Xiang

机构信息

Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Oberpfaffenhofen, 82234 Wessling, Germany.

Signal Processing in Earth Observation (SiPEO), Technical University of Munich (TUM), Arcisstr. 21, 80333 Munich, Germany.

出版信息

ISPRS J Photogramm Remote Sens. 2019 Mar;149:188-199. doi: 10.1016/j.isprsjprs.2019.01.015.

Abstract

Aerial image classification is of great significance in the remote sensing community, and many researches have been conducted over the past few years. Among these studies, most of them focus on categorizing an image into one semantic label, while in the real world, an aerial image is often associated with multiple labels, e.g., multiple object-level labels in our case. Besides, a comprehensive picture of present objects in a given high-resolution aerial image can provide a more in-depth understanding of the studied region. For these reasons, aerial image multi-label classification has been attracting increasing attention. However, one common limitation shared by existing methods in the community is that the co-occurrence relationship of various classes, so-called class dependency, is underexplored and leads to an inconsiderate decision. In this paper, we propose a novel end-to-end network, namely class-wise attention-based convolutional and bidirectional LSTM network (CA-Conv-BiLSTM), for this task. The proposed network consists of three indispensable components: (1) a feature extraction module, (2) a class attention learning layer, and (3) a bidirectional LSTM-based sub-network. Particularly, the feature extraction module is designed for extracting fine-grained semantic feature maps, while the class attention learning layer aims at capturing discriminative class-specific features. As the most important part, the bidirectional LSTM-based sub-network models the underlying class dependency in both directions and produce structured multiple object labels. Experimental results on UCM multi-label dataset and DFC15 multi-label dataset validate the effectiveness of our model quantitatively and qualitatively.

摘要

航空图像分类在遥感领域具有重要意义,在过去几年中已经开展了许多研究。在这些研究中,大多数都集中于将图像分类为一个语义标签,而在现实世界中,航空图像通常与多个标签相关联,例如在我们的案例中有多个对象级标签。此外,给定高分辨率航空图像中当前对象的全貌可以提供对研究区域更深入的理解。基于这些原因,航空图像多标签分类越来越受到关注。然而,该领域现有方法的一个共同局限性在于,各种类别的共现关系,即所谓的类依赖性,未得到充分探索,从而导致决策欠考虑。在本文中,我们针对此任务提出了一种新颖的端到端网络,即基于类注意力的卷积和双向长短期记忆网络(CA-Conv-BiLSTM)。所提出的网络由三个不可或缺的组件组成:(1)一个特征提取模块,(2)一个类注意力学习层,以及(3)一个基于双向长短期记忆网络的子网络。特别地,特征提取模块旨在提取细粒度的语义特征图,而类注意力学习层旨在捕获有区分力的特定类特征。作为最重要的部分,基于双向长短期记忆网络的子网络对潜在的类依赖性进行双向建模,并生成结构化的多个对象标签。在UCM多标签数据集和DFC15多标签数据集上的实验结果从定量和定性两方面验证了我们模型的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d6/6472542/5bf2e17d41fa/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验