Zhang Wuyuan, Fueyo Elena Fernandez, Hollmann Frank, Martin Laura Leemans, Pesic Milja, Wardenga Rainer, Höhne Matthias, Schmidt Sandy
Dept. of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands.
Enzymicals AG Walther-Rathenau-Straße 49a 17489 Greifswald Germany.
European J Org Chem. 2019 Jan 10;2019(1):80-84. doi: 10.1002/ejoc.201801692. Epub 2018 Dec 18.
In this study, we combined photo-organo redox catalysis and biocatalysis to achieve asymmetric C-H bond functionalization of simple alkane starting materials. The photo-organo catalyst anthraquinone sulfate (SAS) was employed to oxyfunctionalise alkanes to aldehydes and ketones. We coupled this light-driven reaction with asymmetric enzymatic functionalisations to yield chiral hydroxynitriles, amines, acyloins and α-chiral ketones with up to 99 % In addition, we demonstrate functional group interconversion to alcohols, esters and carboxylic acids. The transformations can be performed as concurrent tandem reactions. We identified the degradation of substrates and inhibition of the biocatalysts as limiting factors affecting compatibility, due to reactive oxygen species generated in the photocatalytic step. These incompatibilities were addressed by reaction engineering, such as applying a two-phase system or temporal and spatial separation of the catalysts. Using a selection of eleven starting alkanes, one photo-organo catalyst and 8 diverse biocatalysts, we synthesized 26 products and report for the model compounds benzoin and mandelonitrile > 97 % at gram scale.
在本研究中,我们将光有机氧化还原催化与生物催化相结合,以实现简单烷烃起始原料的不对称C-H键官能化。使用光有机催化剂硫酸蒽醌(SAS)将烷烃氧官能化为醛和酮。我们将这种光驱动反应与不对称酶促官能化反应相结合,以产生对映体过量高达99%的手性羟基腈、胺、偶姻和α-手性酮。此外,我们还展示了官能团向醇、酯和羧酸的相互转化。这些转化可以作为并发串联反应进行。由于光催化步骤中产生的活性氧物种,我们确定底物的降解和生物催化剂的抑制是影响兼容性的限制因素。通过反应工程,如应用两相系统或催化剂的时间和空间分离,解决了这些不相容性问题。使用11种起始烷烃、1种光有机催化剂和8种不同的生物催化剂,我们合成了26种产物,并报告了模型化合物苯偶姻和扁桃腈在克级规模下的产率>97%。