Suppr超能文献

通过机理研究开发一种改进的芳基卤化物羧化体系。

Development of an Improved System for the Carboxylation of Aryl Halides through Mechanistic Studies.

作者信息

Charboneau David J, Brudvig Gary W, Hazari Nilay, Lant Hannah M C, Saydjari Andrew K

机构信息

Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States.

出版信息

ACS Catal. 2019 Apr 5;9(4):3228-3241. doi: 10.1021/acscatal.9b00566. Epub 2019 Mar 14.

Abstract

The nickel-catalyzed carboxylation of organic halides or pseudohalides using carbon dioxide is an emerging method to prepare synthetically valuable carboxylic acids. Here, we report a detailed mechanistic investigation of these reactions using the carboxylation of aryl halides with (PPh)NiCl as a model reaction. Our studies allow us to understand several general features of nickel-catalyzed carboxylation reactions. For example, we demonstrate that both a Lewis acid and halide source are beneficial for catalysis. To this end, we establish that heterogeneous Mn(0) and Zn(0) reductants are multifaceted reagents that generate noninnocent Mn(II) or Zn(II) Lewis acids upon oxidation. In a key result, a rare example of a well-defined nickel(I) aryl complex is isolated, and it is demonstrated that its reaction with carbon dioxide results in the formation of a carboxylic acid in high yield (after workup). The carbon dioxide insertion product undergoes rapid decomposition, which ca These three oxidation states correspond to the onbe circumvented by a ligand metathesis reaction with a halide source. Our studies have led to both a revised mechanism and the development of a broadly applicable strategy to improve reductive carboxylation reactions. A critical component of this strategy is that we have replaced the heterogeneous Mn(0) reductant typically used in catalysis with a well-defined homogeneous organic reductant. Through its use, we have increased the range of ancillary ligands, additives, and substrates that are compatible with the reaction. This has enabled us to perform reductive carboxylations at low catalyst loadings. Additionally, we demonstrate that reductive carboxylations of organic (pseudo)halides can be achieved in high yields in more practically useful, non-amide solvents. Our results describe a mechanistically guided strategy to improve reductive carboxylations through the use of a homogeneous organic reductant, which may be broadly translatable to a wide range of cross-electrophile coupling reactions.

摘要

使用二氧化碳对有机卤化物或拟卤化物进行镍催化的羧化反应是一种新兴的制备具有合成价值的羧酸的方法。在此,我们报道了以芳基卤化物与(PPh)NiCl的羧化反应为模型反应,对这些反应进行的详细机理研究。我们的研究使我们能够了解镍催化羧化反应的几个一般特征。例如,我们证明路易斯酸和卤化物源都有利于催化反应。为此,我们确定多相的Mn(0)和Zn(0)还原剂是多面试剂,它们在氧化后会生成非惰性的Mn(II)或Zn(II)路易斯酸。在一个关键结果中,分离出了一个明确的镍(I)芳基配合物的罕见例子,并且证明它与二氧化碳反应能高产率地生成羧酸(后处理后)。二氧化碳插入产物会迅速分解,这可以通过与卤化物源的配体复分解反应来避免。我们的研究既导致了机理的修订,也开发了一种广泛适用的策略来改进还原羧化反应。该策略的一个关键组成部分是,我们用一种明确的均相有机还原剂取代了催化中通常使用的多相Mn(0)还原剂。通过使用这种还原剂,我们扩大了与反应兼容的辅助配体、添加剂和底物的范围。这使我们能够在低催化剂负载量下进行还原羧化反应。此外,我们证明在更实用的非酰胺溶剂中,有机(拟)卤化物的还原羧化反应可以高产率实现。我们的结果描述了一种通过使用均相有机还原剂来改进还原羧化反应的机理指导策略,该策略可能广泛适用于各种交叉亲电偶联反应。

相似文献

1
Development of an Improved System for the Carboxylation of Aryl Halides through Mechanistic Studies.
ACS Catal. 2019 Apr 5;9(4):3228-3241. doi: 10.1021/acscatal.9b00566. Epub 2019 Mar 14.
2
A Widely Applicable Dual Catalytic System for Cross-Electrophile Coupling Enabled by Mechanistic Studies.
ACS Catal. 2020 Nov 6;10(21):12642-12656. doi: 10.1021/acscatal.0c03237. Epub 2020 Sep 29.
3
Metal-Catalyzed Carboxylation of Organic (Pseudo)halides with CO.
ACS Catal. 2016 Oct 7;6(10):6739-6749. doi: 10.1021/acscatal.6b02124. Epub 2016 Aug 30.
4
Nickel-Catalyzed Cross-Electrophile Coupling with Organic Reductants in Non-Amide Solvents.
Chemistry. 2016 Aug 8;22(33):11564-7. doi: 10.1002/chem.201602668. Epub 2016 Jul 8.
5
Nickel-Catalyzed Enantioconvergent Carboxylation Enabled by a Chiral 2,2'-Bipyridine Ligand.
Angew Chem Int Ed Engl. 2022 Dec 19;61(51):e202213943. doi: 10.1002/anie.202213943. Epub 2022 Nov 22.
6
Nickel-catalyzed electrochemical carboxylation of unactivated aryl and alkyl halides with CO.
Nat Commun. 2021 Dec 6;12(1):7086. doi: 10.1038/s41467-021-27437-8.
7
Nickel-Catalyzed Asymmetric Reductive Carbo-Carboxylation of Alkenes with CO.
Angew Chem Int Ed Engl. 2021 Jun 14;60(25):14068-14075. doi: 10.1002/anie.202102769. Epub 2021 May 11.
8
Methods and Mechanisms for Cross-Electrophile Coupling of Csp(2) Halides with Alkyl Electrophiles.
Acc Chem Res. 2015 Jun 16;48(6):1767-75. doi: 10.1021/acs.accounts.5b00057. Epub 2015 May 26.
10
Nickel-Catalyzed Reductive Carboxylation and Amidation Reactions.
Acc Chem Res. 2021 Oct 19;54(20):3941-3952. doi: 10.1021/acs.accounts.1c00480. Epub 2021 Sep 29.

引用本文的文献

1
Discovery of Ni Complexes for CO Insertion Enabled by a Machine Learning-Computational-Selection Sequence.
J Am Chem Soc. 2025 Jul 30;147(30):26149-26157. doi: 10.1021/jacs.5c00441. Epub 2025 Jul 18.
2
Proximal and Remote Hydrocarboxylation of Alkenes with Carbon Dioxide Enabled by Nickel-Catalyzed Hydrogen Atom Transfer.
Angew Chem Int Ed Engl. 2025 May 26;64(22):e202424790. doi: 10.1002/anie.202424790. Epub 2025 Apr 3.
3
CO Fixation into Useful Aromatic Carboxylic Acids via C (sp)-X Bonds Functionalization.
Top Curr Chem (Cham). 2025 Mar 3;383(1):11. doi: 10.1007/s41061-025-00496-x.
4
Homogeneous Organic Reductant Based on 4,4'-Bu-2,2'-Bipyridine for Cross-Electrophile Coupling.
Tetrahedron Lett. 2024 Jul 28;145. doi: 10.1016/j.tetlet.2024.155159. Epub 2024 Jun 19.
5
Efficient palladium-catalyzed electrocarboxylation enables late-stage carbon isotope labelling.
Nat Commun. 2024 Mar 22;15(1):2592. doi: 10.1038/s41467-024-46820-9.
6
Kinetically-Controlled Ni-Catalyzed Direct Carboxylation of Unactivated Secondary Alkyl Bromides without Chain Walking.
J Am Chem Soc. 2024 Jan 24;146(3):1753-1759. doi: 10.1021/jacs.3c11205. Epub 2024 Jan 9.
7
8
Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations.
J Org Chem. 2022 Jun 17;87(12):7589-7609. doi: 10.1021/acs.joc.2c00462. Epub 2022 Jun 7.
9
Ligand and solvent effects on CO insertion into group 10 metal alkyl bonds.
Chem Sci. 2022 Feb 9;13(8):2391-2404. doi: 10.1039/d1sc06346d. eCollection 2022 Feb 23.
10
Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling.
J Am Chem Soc. 2021 Dec 15;143(49):21024-21036. doi: 10.1021/jacs.1c10932. Epub 2021 Nov 30.

本文引用的文献

2
Direct Carbon Isotope Exchange through Decarboxylative Carboxylation.
J Am Chem Soc. 2019 Jan 16;141(2):774-779. doi: 10.1021/jacs.8b12035. Epub 2019 Jan 3.
3
Visible-Light-Driven External-Reductant-Free Cross-Electrophile Couplings of Tetraalkyl Ammonium Salts.
J Am Chem Soc. 2018 Dec 19;140(50):17338-17342. doi: 10.1021/jacs.8b08792. Epub 2018 Dec 7.
4
Acceleration of CO insertion into metal hydrides: ligand, Lewis acid, and solvent effects on reaction kinetics.
Chem Sci. 2018 Jul 6;9(32):6629-6638. doi: 10.1039/c8sc02535e. eCollection 2018 Aug 28.
5
Nickel(I) Aryl Species: Synthesis, Properties, and Catalytic Activity.
ACS Catal. 2018 Mar 2;8(3):2526-2533. doi: 10.1021/acscatal.8b00546. Epub 2018 Feb 13.
7
Intermediacy of Ni-Ni Species in sp C-O Bond Cleavage of Aryl Esters: Relevance in Catalytic C-Si Bond Formation.
J Am Chem Soc. 2018 Jul 18;140(28):8771-8780. doi: 10.1021/jacs.8b04479. Epub 2018 Jul 2.
8
Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide.
Angew Chem Int Ed Engl. 2018 Dec 3;57(49):15948-15982. doi: 10.1002/anie.201803186. Epub 2018 Oct 2.
9
Tandem redox mediator/Ni(ii) trihalide complex photocycle for hydrogen evolution from HCl.
Chem Sci. 2015 Feb 1;6(2):917-922. doi: 10.1039/c4sc02357a. Epub 2014 Oct 8.
10
Ligand-Controlled Regioselective Hydrocarboxylation of Styrenes with CO by Combining Visible Light and Nickel Catalysis.
J Am Chem Soc. 2018 Mar 7;140(9):3198-3201. doi: 10.1021/jacs.7b13448. Epub 2018 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验