Suppr超能文献

镍催化还原转化中的均相有机电子供体

Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations.

作者信息

Charboneau David J, Hazari Nilay, Huang Haotian, Uehling Mycah R, Zultanski Susan L

机构信息

Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States.

Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States.

出版信息

J Org Chem. 2022 Jun 17;87(12):7589-7609. doi: 10.1021/acs.joc.2c00462. Epub 2022 Jun 7.

Abstract

Many contemporary organic transformations, such as Ni-catalyzed cross-electrophile coupling (XEC), require a reductant. Typically, heterogeneous reductants, such as Zn or Mn, are used as the electron source in these reactions. Although heterogeneous reductants are highly practical for preparative-scale batch reactions, they can lead to complications in performing reactions on process scale and are not easily compatible with modern applications, such as flow chemistry. In principle, homogeneous organic reductants can address some of the challenges associated with heterogeneous reductants and also provide greater control of the reductant strength, which can lead to new reactivity. Nevertheless, homogeneous organic reductants have rarely been used in XEC. In this Perspective, we summarize recent progress in the use of homogeneous organic electron donors in Ni-catalyzed XEC and related reactions, discuss potential synthetic and mechanistic benefits, describe the limitations that inhibit their implementation, and outline challenges that need to be solved in order for homogeneous organic reductants to be widely utilized in synthetic chemistry. Although our focus is on XEC, our discussion of the strengths and weaknesses of different methods for introducing electrons is general to other reductive transformations.

摘要

许多当代有机转化反应,如镍催化的交叉亲电偶联反应(XEC),都需要一种还原剂。通常,非均相还原剂,如锌或锰,被用作这些反应中的电子源。尽管非均相还原剂对于制备规模的间歇反应非常实用,但它们可能会在工艺规模的反应中导致复杂情况,并且不易与现代应用(如流动化学)兼容。原则上,均相有机还原剂可以解决一些与非均相还原剂相关的挑战,还能更好地控制还原剂强度,这可能会带来新的反应活性。然而,均相有机还原剂在XEC中很少被使用。在这篇展望文章中,我们总结了在镍催化的XEC及相关反应中使用均相有机电子供体的最新进展,讨论了潜在的合成和机理优势,描述了阻碍其应用的局限性,并概述了为使均相有机还原剂在合成化学中得到广泛应用而需要解决的挑战。尽管我们关注的是XEC,但我们对不同电子引入方法优缺点的讨论适用于其他还原转化反应。

相似文献

1
Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations.
J Org Chem. 2022 Jun 17;87(12):7589-7609. doi: 10.1021/acs.joc.2c00462. Epub 2022 Jun 7.
2
Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling.
J Am Chem Soc. 2021 Dec 15;143(49):21024-21036. doi: 10.1021/jacs.1c10932. Epub 2021 Nov 30.
3
Insights into Recent Nickel-Catalyzed Reductive and Redox C-C Coupling of Electrophiles, C(sp)-H Bonds and Alkenes.
Acc Chem Res. 2024 Apr 16;57(8):1149-1162. doi: 10.1021/acs.accounts.3c00810. Epub 2024 Mar 28.
4
Zinc and manganese redox potentials in organic solvents and their influence on nickel-catalysed cross-electrophile coupling.
Nat Chem. 2024 Dec;16(12):2036-2043. doi: 10.1038/s41557-024-01627-5. Epub 2024 Sep 6.
5
Enantioselective C(sp)-C(sp) Bond Construction by Ni Catalysis.
Acc Chem Res. 2024 Mar 5;57(5):751-762. doi: 10.1021/acs.accounts.3c00775. Epub 2024 Feb 12.
6
Development of an Improved System for the Carboxylation of Aryl Halides through Mechanistic Studies.
ACS Catal. 2019 Apr 5;9(4):3228-3241. doi: 10.1021/acscatal.9b00566. Epub 2019 Mar 14.
7
Homogeneous Organic Reductant Based on 4,4'-Bu-2,2'-Bipyridine for Cross-Electrophile Coupling.
Tetrahedron Lett. 2024 Jul 28;145. doi: 10.1016/j.tetlet.2024.155159. Epub 2024 Jun 19.
8
Nickel-Catalyzed Cross-Electrophile Coupling with Organic Reductants in Non-Amide Solvents.
Chemistry. 2016 Aug 8;22(33):11564-7. doi: 10.1002/chem.201602668. Epub 2016 Jul 8.
9
Recent Advances in First-Row Transition Metal-Catalyzed Reductive Coupling Reactions for π-Bond Functionalization and C-Glycosylation.
Acc Chem Res. 2023 Nov 21;56(22):3292-3312. doi: 10.1021/acs.accounts.3c00531. Epub 2023 Nov 2.
10
Nickel-Catalyzed Stereoselective Coupling Reactions of Benzylic and Alkyl Alcohol Derivatives.
Acc Chem Res. 2023 Nov 21;56(22):3313-3324. doi: 10.1021/acs.accounts.3c00547. Epub 2023 Nov 7.

引用本文的文献

1
Formate-Mediated C-C Coupling of Aryl/Vinyl Halides and Triflates: Carbonyl Arylation and Reductive Cross-Coupling.
ACS Catal. 2025 May 16;15(10):8274-8283. doi: 10.1021/acscatal.5c01994. Epub 2025 May 2.
3
Translation of Nickel-Catalyzed C(sp)-C(sp) Cross-Electrophile Coupling to Non-Amide Solvents.
Org Lett. 2025 Apr 25;27(16):4310-4315. doi: 10.1021/acs.orglett.5c01011. Epub 2025 Apr 14.
4
Aryl halide cross-coupling via formate-mediated transfer hydrogenation.
Nat Chem. 2025 May;17(5):710-718. doi: 10.1038/s41557-024-01729-0. Epub 2025 Mar 11.
5
Selective Ni-Catalyzed Cross-Electrophile Coupling of Heteroaryl Chlorides and Aryl Bromides at 1:1 Substrate Ratio.
J Am Chem Soc. 2025 Jan 8;147(1):353-361. doi: 10.1021/jacs.4c10776. Epub 2024 Dec 23.
6
Ligand-Metal Cooperation Enables Net Ring-Opening C-C Activation / Difunctionalization of Cyclopropyl Ketones.
ACS Catal. 2023 Sep 1;13(17):11277-11290. doi: 10.1021/acscatal.3c02643. Epub 2023 Aug 11.
7
Zinc and manganese redox potentials in organic solvents and their influence on nickel-catalysed cross-electrophile coupling.
Nat Chem. 2024 Dec;16(12):2036-2043. doi: 10.1038/s41557-024-01627-5. Epub 2024 Sep 6.
8
Formate-Mediated Reductive Cross-Coupling of Vinyl Halides and Aryl Iodides: -Substitution via Palladium(I) Catalysis.
Org Lett. 2024 Aug 23;26(33):7055-7059. doi: 10.1021/acs.orglett.4c02642. Epub 2024 Aug 12.
9
Sacrificial Anode-Free Electrochemical Cross-Electrophile Coupling of 1,3-Diol Derivatives to Form Aliphatic and Aryl Cyclopropanes.
Org Lett. 2024 Aug 9;26(31):6556-6561. doi: 10.1021/acs.orglett.4c02022. Epub 2024 Jul 31.
10
Cyclopropanation with Non-Stabilized Carbenes via Ketyl Radicals.
J Am Chem Soc. 2024 Aug 28;146(34):24009-24015. doi: 10.1021/jacs.4c07388. Epub 2024 Jul 24.

本文引用的文献

1
The application of modern reactions in large-scale synthesis.
Nat Rev Chem. 2021 Aug;5(8):546-563. doi: 10.1038/s41570-021-00288-z. Epub 2021 Jun 22.
2
In-Situ Bromination Enables Formal Cross-Electrophile Coupling of Alcohols with Aryl and Alkenyl Halides.
ACS Catal. 2022 Jan 7;12(1):580-586. doi: 10.1021/acscatal.1c05208. Epub 2021 Dec 21.
3
A General, Multimetallic Cross-Ullmann Biheteroaryl Synthesis from Heteroaryl Halides and Heteroaryl Triflates.
J Am Chem Soc. 2021 Dec 29;143(51):21484-21491. doi: 10.1021/jacs.1c10907. Epub 2021 Dec 17.
4
Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling.
J Am Chem Soc. 2021 Dec 15;143(49):21024-21036. doi: 10.1021/jacs.1c10932. Epub 2021 Nov 30.
5
Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis.
Chem Rev. 2022 Jan 26;122(2):2487-2649. doi: 10.1021/acs.chemrev.1c00384. Epub 2021 Nov 9.
6
"How Should I Think about Voltage? What Is Overpotential?": Establishing an Organic Chemistry Intuition for Electrochemistry.
J Org Chem. 2021 Nov 19;86(22):15875-15885. doi: 10.1021/acs.joc.1c01520. Epub 2021 Oct 5.
8
Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a Standardized Microscale Reactor.
ACS Cent Sci. 2021 Aug 25;7(8):1347-1355. doi: 10.1021/acscentsci.1c00328. Epub 2021 Aug 5.
10
A Process Chemistry Benchmark for sp-sp Cross Couplings.
J Org Chem. 2021 Aug 6;86(15):10380-10396. doi: 10.1021/acs.joc.1c01073. Epub 2021 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验