Suppr超能文献

开发一种算法以识别继发于大血管病因的脑出血患者。

Developing an algorithm to identify patients with intracerebral haemorrhage secondary to a macrovascular cause.

作者信息

Wilson Duncan, Ogungbemi Ayokunle, Ambler Gareth, Jones Ifan, Werring David J, Jäger Hans R

机构信息

1Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.

2Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.

出版信息

Eur Stroke J. 2017 Dec;2(4):369-376. doi: 10.1177/2396987317732874. Epub 2017 Sep 19.

Abstract

INTRODUCTION

Determining the cause of spontaneous (non-traumatic) intracerebral haemorrhage (ICH) is critical to guide treatment and prognosis. We investigated whether small vessel disease (SVD) in addition to clinical and other radiological findings on acute neuroimaging predicts a low risk of a macrovascular cause (e.g. an arterio-venous malformation, aneurysm or dural arteriovenous fistula).

PATIENTS AND METHODS

We identified patients with acute spontaneous ICH who underwent acute non-contrast CT, CT angiography (CTA) and intra-arterial digital subtraction angiography (IADSA) at our institution from January 2010 to April 2014. Logistic regression including CTA result, SVD, age, pre-ICH hypertension and ICH location was used to derive a prediction model, validated using bootstrapping.

RESULTS

173 patients (46% female, median age 49) of whom 78 had a macrovascular cause on IADSA were included. Predictors of a macrovascular cause were: abnormal CTA (OR 67.4;  < 0.001); absence of SVD (OR 5.0;  = 0.019); and absence of pre-ICH hypertension (OR 3.4;  = 0.05). In our internally derived prediction model, the combination of CTA, SVD and pre-ICH hypertension predicted the likelihood of an underlying macrovascular cause (optimism-adjusted ROC area 0.919). Patients with negative CTA, SVD and pre-ICH hypertension have a low likelihood of an underlying macrovascular cause (1.8%).

DISCUSSION AND CONCLUSION

A combination of CTA, SVD and pre-ICH hypertension predict the likelihood of finding a macrovascular cause in patients with acute spontaneous ICH, allowing informed decisions regarding the likely benefit and risk of IADSA.

摘要

引言

确定自发性(非创伤性)脑出血(ICH)的病因对于指导治疗和判断预后至关重要。我们研究了除急性神经影像学检查的临床及其他影像学表现外,小血管疾病(SVD)是否预示大血管病因(如动静脉畸形、动脉瘤或硬脑膜动静脉瘘)的风险较低。

患者与方法

我们纳入了2010年1月至2014年4月期间在我院接受急性非增强CT、CT血管造影(CTA)和动脉内数字减影血管造影(IADSA)的急性自发性ICH患者。采用逻辑回归分析,纳入CTA结果、SVD、年龄、ICH前高血压及ICH部位等因素建立预测模型,并通过自抽样法进行验证。

结果

共纳入173例患者(46%为女性,中位年龄49岁),其中78例经IADSA检查发现存在大血管病因。大血管病因的预测因素包括:CTA异常(比值比[OR]67.4;P<0.001);无SVD(OR 5.0;P = 0.019);无ICH前高血压(OR 3.4;P = 0.05)。在我们内部建立的预测模型中,CTA、SVD和ICH前高血压的联合可预测潜在大血管病因的可能性(乐观校正的受试者工作特征曲线下面积为0.919)。CTA、SVD及ICH前高血压均为阴性的患者,潜在大血管病因的可能性较低(1.8%)。

讨论与结论

CTA、SVD和ICH前高血压的联合可预测急性自发性ICH患者存在大血管病因的可能性,有助于就IADSA可能的获益和风险做出明智决策。

相似文献

4
CT and DSA for evaluation of spontaneous intracerebral lobar bleedings.用于评估自发性脑叶出血的CT和DSA
Front Neurol. 2022 Oct 3;13:956888. doi: 10.3389/fneur.2022.956888. eCollection 2022.

引用本文的文献

4
Stroke Controversies and Debates: Imaging in Intracerebral Hemorrhage.中风争议与辩论:脑出血的影像学
Stroke. 2024 Nov;55(11):2765-2771. doi: 10.1161/STROKEAHA.123.043480. Epub 2024 Oct 2.
6
CT and DSA for evaluation of spontaneous intracerebral lobar bleedings.用于评估自发性脑叶出血的CT和DSA
Front Neurol. 2022 Oct 3;13:956888. doi: 10.3389/fneur.2022.956888. eCollection 2022.
7
Neuroimaging of Acute Intracerebral Hemorrhage.急性脑出血的神经影像学
J Clin Med. 2021 Mar 5;10(5):1086. doi: 10.3390/jcm10051086.
8
Acute intracerebral haemorrhage: diagnosis and management.急性脑出血:诊断与管理
Pract Neurol. 2020 Dec 7;21(2):128-36. doi: 10.1136/practneurol-2020-002763.

本文引用的文献

4
Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis.脑出血后的长期预后:系统评价和荟萃分析。
J Neurol Neurosurg Psychiatry. 2014 Jun;85(6):660-7. doi: 10.1136/jnnp-2013-306476. Epub 2013 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验