Suppr超能文献

使用个性化管道进行 HLA 基因的表达估计和 eQTL 映射。

Expression estimation and eQTL mapping for HLA genes with a personalized pipeline.

机构信息

Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.

Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.

出版信息

PLoS Genet. 2019 Apr 22;15(4):e1008091. doi: 10.1371/journal.pgen.1008091. eCollection 2019 Apr.

Abstract

The HLA (Human Leukocyte Antigens) genes are well-documented targets of balancing selection, and variation at these loci is associated with many disease phenotypes. Variation in expression levels also influences disease susceptibility and resistance, but little information exists about the regulation and population-level patterns of expression. This results from the difficulty in mapping short reads originated from these highly polymorphic loci, and in accounting for the existence of several paralogues. We developed a computational pipeline to accurately estimate expression for HLA genes based on RNA-seq, improving both locus-level and allele-level estimates. First, reads are aligned to all known HLA sequences in order to infer HLA genotypes, then quantification of expression is carried out using a personalized index. We use simulations to show that expression estimates obtained in this way are not biased due to divergence from the reference genome. We applied our pipeline to the GEUVADIS dataset, and compared the quantifications to those obtained with reference transcriptome. Although the personalized pipeline recovers more reads, we found that using the reference transcriptome produces estimates similar to the personalized pipeline (r ≥ 0.87) with the exception of HLA-DQA1. We describe the impact of the HLA-personalized approach on downstream analyses for nine classical HLA loci (HLA-A, HLA-C, HLA-B, HLA-DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1). Although the influence of the HLA-personalized approach is modest for eQTL mapping, the p-values and the causality of the eQTLs obtained are better than when the reference transcriptome is used. We investigate how the eQTLs we identified explain variation in expression among lineages of HLA alleles. Finally, we discuss possible causes underlying differences between expression estimates obtained using RNA-seq, antibody-based approaches and qPCR.

摘要

HLA(人类白细胞抗原)基因是平衡选择的明确靶点,这些基因座的变异与许多疾病表型有关。表达水平的变异也会影响疾病的易感性和抗性,但关于这些基因座的调控和群体水平表达模式的信息很少。这是因为很难将源自这些高度多态性基因座的短读序列进行映射,并考虑到几个同源基因的存在。我们开发了一种基于 RNA-seq 准确估计 HLA 基因表达的计算流程,提高了基因座和等位基因水平的估计。首先,将读取序列与所有已知的 HLA 序列进行比对,以推断 HLA 基因型,然后使用个性化指数进行表达定量。我们使用模拟来表明,由于与参考基因组的差异,以这种方式获得的表达估计不会产生偏差。我们将我们的流程应用于 GEUVADIS 数据集,并将定量结果与参考转录组进行了比较。虽然个性化流程恢复了更多的读取,但我们发现使用参考转录组产生的估计值与个性化流程相似(r≥0.87),除了 HLA-DQA1 之外。我们描述了 HLA 个性化方法对九个经典 HLA 基因座(HLA-A、HLA-C、HLA-B、HLA-DRA、HLA-DRB1、HLA-DQA1、HLA-DQB1、HLA-DPA1、HLA-DPB1)下游分析的影响。虽然 HLA 个性化方法对 eQTL 作图的影响不大,但获得的 eQTL 的 p 值和因果关系比使用参考转录组更好。我们研究了我们确定的 eQTL 如何解释 HLA 等位基因谱系之间表达的变异。最后,我们讨论了基于 RNA-seq、抗体方法和 qPCR 获得的表达估计值之间差异的可能原因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验