Suppr超能文献

教程:识别驱动复杂疾病的 HLA 等位基因的统计遗传学指南。

Tutorial: a statistical genetics guide to identifying HLA alleles driving complex disease.

机构信息

Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Protoc. 2023 Sep;18(9):2625-2641. doi: 10.1038/s41596-023-00853-4. Epub 2023 Jul 26.

Abstract

The human leukocyte antigen (HLA) locus is associated with more complex diseases than any other locus in the human genome. In many diseases, HLA explains more heritability than all other known loci combined. In silico HLA imputation methods enable rapid and accurate estimation of HLA alleles in the millions of individuals that are already genotyped on microarrays. HLA imputation has been used to define causal variation in autoimmune diseases, such as type I diabetes, and in human immunodeficiency virus infection control. However, there are few guidelines on performing HLA imputation, association testing, and fine mapping. Here, we present a comprehensive tutorial to impute HLA alleles from genotype data. We provide detailed guidance on performing standard quality control measures for input genotyping data and describe options to impute HLA alleles and amino acids either locally or using the web-based Michigan Imputation Server, which hosts a multi-ancestry HLA imputation reference panel. We also offer best practice recommendations to conduct association tests to define the alleles, amino acids, and haplotypes that affect human traits. Along with the pipeline, we provide a step-by-step online guide with scripts and available software ( https://github.com/immunogenomics/HLA_analyses_tutorial ). This tutorial will be broadly applicable to large-scale genotyping data and will contribute to defining the role of HLA in human diseases across global populations.

摘要

人类白细胞抗原 (HLA) 基因座与人类基因组中的任何其他基因座相比,与更多复杂的疾病相关。在许多疾病中,HLA 解释的遗传率超过所有其他已知基因座的总和。基于计算机的 HLA 推测方法能够快速准确地估计已经在微阵列上进行基因分型的数百万个体中的 HLA 等位基因。HLA 推测已被用于定义自身免疫性疾病(如 1 型糖尿病)和人类免疫缺陷病毒感染控制中的因果变异。然而,关于 HLA 推测、关联测试和精细映射的指南很少。在这里,我们提供了一个全面的教程,从基因型数据中推测 HLA 等位基因。我们提供了有关执行输入基因分型数据的标准质量控制措施的详细指导,并描述了使用本地或基于网络的密歇根州推测服务器(该服务器托管多民族 HLA 推测参考面板)来推测 HLA 等位基因和氨基酸的选项。我们还提供了进行关联测试以定义影响人类特征的等位基因、氨基酸和单倍型的最佳实践建议。我们提供了一个管道以及一个带有脚本和可用软件的分步在线指南 (https://github.com/immunogenomics/HLA_analyses_tutorial)。本教程将广泛适用于大规模基因分型数据,并有助于确定 HLA 在全球人群中人类疾病中的作用。

相似文献

2
Imputing amino acid polymorphisms in human leukocyte antigens.推断人类白细胞抗原中的氨基酸多态性。
PLoS One. 2013 Jun 6;8(6):e64683. doi: 10.1371/journal.pone.0064683. Print 2013.
7
Assessing HLA imputation accuracy in a West African population.评估西非人群中 HLA 推测的准确性。
PLoS One. 2023 Sep 28;18(9):e0291437. doi: 10.1371/journal.pone.0291437. eCollection 2023.
10
Comparison of HLA allelic imputation programs.HLA 等位基因推算程序的比较。
PLoS One. 2017 Feb 16;12(2):e0172444. doi: 10.1371/journal.pone.0172444. eCollection 2017.

引用本文的文献

本文引用的文献

3
A cross-population atlas of genetic associations for 220 human phenotypes.220 个人类表型的跨人群遗传关联图谱。
Nat Genet. 2021 Oct;53(10):1415-1424. doi: 10.1038/s41588-021-00931-x. Epub 2021 Sep 30.
4
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
5
A comparison of genotyping arrays.基因分型芯片比较。
Eur J Hum Genet. 2021 Nov;29(11):1611-1624. doi: 10.1038/s41431-021-00917-7. Epub 2021 Jun 18.
8
Next-generation sequencing technologies: An overview.下一代测序技术:概述
Hum Immunol. 2021 Nov;82(11):801-811. doi: 10.1016/j.humimm.2021.02.012. Epub 2021 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验