Suppr超能文献

Cryo-electron tomography reveals the structures of polar and lateral flagella.

Structures of Polar and Lateral Flagella Revealed by Cryo-Electron Tomography.

机构信息

Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA.

Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA.

出版信息

J Bacteriol. 2019 Jun 10;201(13). doi: 10.1128/JB.00117-19. Print 2019 Jul 1.

Abstract

The bacterial flagellum is a sophisticated self-assembling nanomachine responsible for motility in many bacterial pathogens, including , spp., and The bacterial flagellum has been studied extensively in the model systems and serovar Typhimurium, yet the range of variation in flagellar structure and assembly remains incompletely understood. Here, we used cryo-electron tomography and subtomogram averaging to determine structures of polar flagella in and peritrichous flagella in Typhimurium, revealing notable differences between these two flagellar systems. Furthermore, we observed flagellar outer membrane complexes as well as many incomplete flagellar subassemblies, which provide additional insight into mechanisms underlying flagellar assembly and loss in both and Typhimurium. The bacterial flagellum has evolved as one of the most sophisticated self-assembled molecular machines, which confers locomotion and is often associated with virulence of bacterial pathogens. Variation in species-specific features of the flagellum, as well as in flagellar number and placement, results in structurally distinct flagella that appear to be adapted to the specific environments that bacteria encounter. Here, we used cutting-edge imaging techniques to determine high-resolution structures of polar flagella in and peritrichous flagella in serovar Typhimurium, demonstrating substantial variation between flagella in these organisms. Importantly, we observed novel flagellar subassemblies and provided additional insight into the structural basis of flagellar assembly and loss in both and Typhimurium.

摘要

细菌鞭毛是一种复杂的自组装纳米机器,负责许多细菌病原体的运动,包括 、 和 。细菌鞭毛在模型系统 和 血清型鼠伤寒沙门氏菌中已经得到了广泛的研究,但鞭毛结构和组装的变化范围仍不完全了解。在这里,我们使用冷冻电子断层扫描和亚断层平均法来确定 和 血清型鼠伤寒沙门氏菌中的极性鞭毛和周生鞭毛的 结构,揭示了这两种鞭毛系统之间的显著差异。此外,我们还观察到鞭毛外膜复合物以及许多不完整的鞭毛亚组装体,这为鞭毛组装和丢失的机制提供了额外的见解。细菌鞭毛已经进化成为最复杂的自组装分子机器之一,它赋予了细菌运动能力,并且常常与细菌病原体的毒力有关。鞭毛的物种特异性特征的变化,以及鞭毛的数量和位置的变化,导致了结构上不同的鞭毛,这些鞭毛似乎适应了细菌所遇到的特定环境。在这里,我们使用最先进的成像技术来确定 和 血清型鼠伤寒沙门氏菌中的极性鞭毛和周生鞭毛的高分辨率 结构,证明了这两种生物体中鞭毛之间存在显著的差异。重要的是,我们观察到了新的鞭毛亚组装体,并为鞭毛组装和丢失的结构基础提供了额外的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验