Könik Arda, De Beenhouwer Jan, Mukherjee Joyeeta M, Kalluri Kesava, Banerjee Soumyanil, Zeraatkar Navid, Fromme Timothy, King Michael A
Department of Radiology, UMass Medical School, Worcester, MA, USA.
Univ. of Antwerp,imec-Vision Lab, Antwerp, Belgium.
IEEE Trans Radiat Plasma Med Sci. 2018 Sep;2(5):444-451. doi: 10.1109/TRPMS.2018.2831208. Epub 2018 Apr 30.
SPECT imaging of the dopamine transporter (DAT) is used for diagnosis and monitoring progression of Parkinson's Disease (PD), and differentiation of PD from other neurological disorders. The diagnosis is based on the DAT binding in the caudate and putamen structures in the striatum. We previously proposed a relatively inexpensive method to improve the detection and quantification of these structures for dual-head SPECT by replacing one of the fan-beam collimators with a specially designed multi-pinhole (MPH) collimator. In this work, we developed a realistic model of the proposed MPH system using the GATE simulation package and verified the geometry with an analytic simulator. Point source projections from these simulations closely matched confirming the accuracy of the pinhole geometries. The reconstruction of a hot-rod phantom showed that 4.8 mm resolution is achievable. The reconstructions of the XCAT brain phantom showed clear separation of the putamen and caudate, which is expected to improve the quantification of DAT imaging and PD diagnosis. Using this GATE model, point spread functions modeling physical factors will be generated for use in reconstruction. Also, further improvements in geometry are being investigated to increase the sensitivity of this base system while maintaining a target spatial resolution of 4.5-5 mm.
多巴胺转运体(DAT)的单光子发射计算机断层扫描(SPECT)成像用于帕金森病(PD)的诊断和病情进展监测,以及PD与其他神经系统疾病的鉴别诊断。诊断基于纹状体中尾状核和壳核结构的DAT结合情况。我们之前提出了一种相对廉价的方法,通过用专门设计的多孔径(MPH)准直器替换双头SPECT的一个扇形束准直器,来改进这些结构的检测和定量分析。在这项工作中,我们使用GATE模拟软件包开发了所提出的MPH系统的真实模型,并用解析模拟器验证了其几何结构。这些模拟得到的点源投影紧密匹配,证实了针孔几何结构的准确性。热棒体模的重建显示可实现4.8毫米的分辨率。XCAT脑体模的重建显示壳核和尾状核清晰分离,这有望改善DAT成像的定量分析和PD诊断。利用这个GATE模型,将生成考虑物理因素的点扩散函数用于重建。此外,正在研究进一步改进几何结构,以提高这个基础系统的灵敏度,同时保持4.5 - 5毫米的目标空间分辨率。