Ghent University-iMinds, Department of Electronics and Information Systems, MEDISIP-IBiTech, De Pintelaan 185 block B/5, B-9000 Ghent, Belgium.
Phys Med Biol. 2013 Sep 21;58(18):6317-36. doi: 10.1088/0031-9155/58/18/6317. Epub 2013 Aug 22.
Currently, clinical brain single photon emission computed tomography (SPECT) is mostly performed using rotating dual-head gamma cameras equipped with low-energy-high-resolution parallel-beam collimators (LEHR PAR). The resolution of these systems is rather poor (8-10 mm) and the rotation of the heavy gamma cameras can introduce misalignment errors. Therefore, we designed a static full-ring multi-lofthole brain SPECT insert for an existing ring of LaBr3 (5% Ce) detectors. The novelty of the design is found in the shutter mechanism that makes the system very flexible and eliminates the need for rotating parts. A stationary SPECT insert is not only more robust, it is also easier to integrate in a magnetic resonance imaging system (MRI) for simultaneous SPECT-MRI. The target spatial resolution of our design is 6 mm. In this study we used analytical calculations to optimize the collimator for an existing ring of LaBr3 (5% Ce) detectors. We fixed the target spatial resolution at 6 mm in the center of the field-of-view and maximized the volume sensitivity by changing the collimator radius, the aperture and the number of loftholes. Based on these optimal parameters we simulated phantom data and evaluated the image quality of our multi-lofthole system. We simulated a noiseless uniform and Defrise phantom to assess artifacts and sampling completeness and a noiseless hot-rod phantom to assess the reconstructed spatial resolution. We visually evaluated a simulated noisy Hoffman phantom with two lesions. Then, we evaluated the non-prewhitening matched filter signal-to-noise ratio (NPW-SNR) in two lesion detectability phantoms: one with hot lesions and one with cold lesions. Finally, a contrast-to-noise (CNR) study was performed on a phantom with both hot and cold lesions of different sizes (6-16 mm). All results were compared to a LEHR PAR system. The optimization resulted in a final collimator design with a volume sensitivity of 1.55 × 10(-4) cps Bq(-1), which is 2.5 times lower than the sensitivity of a dual-head system with LEHR PAR collimators. Spatial resolution, on the other hand, has clearly improved compared to LEHR PAR: with the multi-lofthole system we successfully reconstructed 4 mm hot rods. Although this improved resolution did not result in an unambiguous improvement in CNR or NPW-SNR, we believe that the flexibility of the shutter mechanism opens interesting perspectives toward time-multiplexing and integration with MRI.
目前,临床脑部单光子发射计算机断层扫描(SPECT)主要使用配备低能高分辨率平行束准直器(LEHR PAR)的旋转双头伽马相机进行。这些系统的分辨率相当差(8-10 毫米),并且重型伽马相机的旋转可能会引入对准误差。因此,我们为现有的 LaBr3(5%Ce)探测器环设计了一个静态全环多狭缝脑 SPECT 插件。该设计的新颖之处在于快门机制,该机制使系统非常灵活,并消除了对旋转部件的需求。与旋转式 SPECT 插入器相比,固定的 SPECT 插入器不仅更坚固,而且更容易集成到磁共振成像系统(MRI)中,以实现 SPECT-MRI 同时进行。我们设计的目标空间分辨率为 6 毫米。在这项研究中,我们使用分析计算来优化用于现有 LaBr3(5%Ce)探测器环的准直器。我们将目标空间分辨率固定在视场中心的 6 毫米处,并通过改变准直器半径、孔径和狭缝数量来最大化体积灵敏度。基于这些最佳参数,我们模拟了幻影数据并评估了我们的多狭缝系统的图像质量。我们模拟了无噪声均匀的 Defrise 幻影以评估伪影和采样完整性,以及无噪声热棒幻影以评估重建的空间分辨率。我们通过两个病变对模拟的嘈杂霍夫曼幻影进行了视觉评估。然后,我们在两个病变可检测性幻影中评估了非预白化匹配滤波器信噪比(NPW-SNR):一个带有热病变,一个带有冷病变。最后,对具有不同大小(6-16 毫米)的热病变和冷病变的幻影进行了对比度噪声比(CNR)研究。所有结果均与 LEHR PAR 系统进行了比较。优化后的结果是最终的准直器设计,其体积灵敏度为 1.55×10(-4)cps Bq(-1),比配备 LEHR PAR 准直器的双头系统低 2.5 倍。另一方面,空间分辨率明显优于 LEHR PAR:使用多狭缝系统,我们成功重建了 4 毫米热棒。尽管这种改进的分辨率并没有导致 CNR 或 NPW-SNR 的明显改善,但我们相信快门机制的灵活性为时间复用和与 MRI 的集成开辟了有趣的前景。