Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424 LIBM Chambéry), Université Savoie Mont Blanc, Campus Scientifique Technolac, 73376, Chambéry, Le Bourget Du Lac Cedex, France.
Faculty of Biology and Medicine, Institute of Sport Sciences (ISSUL), University of Lausanne, Lausanne, Switzerland.
Eur J Appl Physiol. 2019 Jul;119(7):1533-1545. doi: 10.1007/s00421-019-04143-4. Epub 2019 Apr 22.
This study aimed to determine the effects of hypoxia and/or blood flow restriction (BFR) on an arm-cycling repeated sprint ability test (aRSA) and its impact on elbow flexor neuromuscular function.
Fourteen volunteers performed an aRSA (10 s sprint/20 s recovery) to exhaustion in four randomized conditions: normoxia (NOR), normoxia plus BFR (N), hypoxia (FiO = 0.13, HYP) and hypoxia plus BFR (H). Maximal voluntary contraction (MVC), resting twitch force (Db10), and electromyographic responses from the elbow flexors [biceps brachii (BB)] to electrical and transcranial magnetic stimulation were obtained to assess neuromuscular function. Main effects of hypoxia, BFR, and interaction were analyzed on delta values from pre- to post-exercise.
BFR and hypoxia decreased the number of sprints during aRSA with no significant cumulative effect (NOR 16 ± 8; N 12 ± 4; HYP 10 ± 3 and H 8 ± 3; P < 0.01). MVC decrease from pre- to post-exercise was comparable whatever the condition. M-wave amplitude (- 9.4 ± 1.9% vs. + 0.8 ± 2.0%, P < 0.01) and Db10 force (- 41.8 ± 4.7% vs. - 27.9 ± 4.5%, P < 0.01) were more altered after aRSA with BFR compared to without BFR. The exercise-induced increase in corticospinal excitability was significantly lower in hypoxic vs. normoxic conditions (e.g., BB motor evoked potential at 75% of MVC: - 2.4 ± 4.2% vs. + 16.0 ± 5.9%, respectively, P = 0.03).
BFR and hypoxia led to comparable aRSA performance impairments but with distinct fatigue etiology. BFR impaired the muscle excitation-contraction coupling whereas hypoxia predominantly affected corticospinal excitability indicating incapacity of the corticospinal pathway to adapt to fatigue as in normoxia.
本研究旨在确定低氧和/或血流限制(BFR)对上肢循环重复冲刺能力测试(aRSA)的影响及其对肘屈肌神经肌肉功能的影响。
14 名志愿者在四种随机条件下进行了 aRSA(10 秒冲刺/20 秒恢复)至力竭:常氧(NOR)、常氧加 BFR(N)、低氧(FiO=0.13,HYP)和低氧加 BFR(H)。测量最大自主收缩(MVC)、静息抽搐力(Db10)以及肘部屈肌(肱二头肌[BB])对电刺激和经颅磁刺激的肌电图反应,以评估神经肌肉功能。分析低氧、BFR 和相互作用的主要影响,以及从运动前到运动后的差值。
BFR 和低氧降低了 aRSA 期间的冲刺次数,但无显著累积效应(NOR 16±8;N 12±4;HYP 10±3 和 H 8±3;P<0.01)。无论条件如何,从运动前到运动后的 MVC 下降都是可比的。与无 BFR 相比,有 BFR 时 M 波振幅(-9.4±1.9%对+0.8±2.0%,P<0.01)和 Db10 力(-41.8±4.7%对-27.9±4.5%,P<0.01)的变化更大。与常氧相比,低氧时皮质脊髓兴奋性的运动诱导增加明显较低(例如,BB 运动诱发电位在 MVC 的 75%:-2.4±4.2%对+16.0±5.9%,P=0.03)。
BFR 和低氧导致相似的 aRSA 性能障碍,但疲劳病因不同。BFR 损害了肌肉兴奋-收缩耦联,而低氧主要影响皮质脊髓兴奋性,表明皮质脊髓通路在常氧下无法适应疲劳。