Sotoma Shingo, Okita Hirotaka, Chuma Shunsuke, Harada Yoshie
Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
Biophys Physicobiol. 2022 Sep 8;19:e190034. doi: 10.2142/biophysico.bppb-v19.0034. eCollection 2022.
Measuring physical quantities in the nanometric region inside single cells is of great importance for understanding cellular activity. Thus, the development of biocompatible, sensitive, and reliable nanobiosensors is essential for progress in biological research. Diamond nanoparticles containing nitrogen-vacancy centers (NVCs), referred to as fluorescent nanodiamonds (FNDs), have recently emerged as the sensors that show great promise for ultrasensitive nanosensing of physical quantities. FNDs emit stable fluorescence without photobleaching. Additionally, their distinctive magneto-optical properties enable an optical readout of the quantum states of the electron spin in NVC under ambient conditions. These properties enable the quantitative sensing of physical parameters (temperature, magnetic field, electric field, pH, etc.) in the vicinity of an FND; hence, FNDs are often described as "quantum sensors". In this review, recent advancements in biosensing applications of FNDs are summarized. First, the principles of orientation and temperature sensing using FND quantum sensors are explained. Next, we introduce surface coating techniques indispensable for controlling the physicochemical properties of FNDs. The achievements of practical biological sensing using surface-coated FNDs, including orientation, temperature, and thermal conductivity, are then highlighted. Finally, the advantages, challenges, and perspectives of the quantum sensing of FND are discussed. This review article is an extended version of the Japanese article, In Situ Measurement of Intracellular Thermal Conductivity Using Diamond Nanoparticle, published in SEIBUTSU BUTSURI Vol. 62, p. 122-124 (2022).
在单细胞内部的纳米区域测量物理量对于理解细胞活动至关重要。因此,开发生物相容性好、灵敏且可靠的纳米生物传感器对于生物学研究的进展至关重要。含有氮空位中心(NVCs)的金刚石纳米颗粒,即荧光纳米金刚石(FNDs),最近已成为在物理量超灵敏纳米传感方面显示出巨大潜力的传感器。FNDs发出稳定的荧光且不会发生光漂白。此外,它们独特的磁光特性能够在环境条件下对NVC中电子自旋的量子态进行光学读出。这些特性使得能够对FND附近的物理参数(温度、磁场、电场、pH等)进行定量传感;因此,FNDs常被描述为“量子传感器”。在这篇综述中,总结了FNDs在生物传感应用方面的最新进展。首先,解释了使用FND量子传感器进行取向和温度传感的原理。接下来,我们介绍了控制FNDs物理化学性质不可或缺的表面涂层技术。然后重点介绍了使用表面涂层FNDs进行实际生物传感的成果,包括取向、温度和热导率。最后,讨论了FND量子传感的优点、挑战和前景。这篇综述文章是发表于《生物物理》第62卷,第122 - 124页(2022年)的日文文章《使用金刚石纳米颗粒原位测量细胞内热导率》的扩展版本。