Suppr超能文献

α-FeO纳米颗粒修饰的ZnO纳米线气体传感器对CO的灵敏度提高

Improved Sensitivity of α-FeO Nanoparticle-Decorated ZnO Nanowire Gas Sensor for CO.

作者信息

Lee Jeongseok, Lee Se-Hyeong, Bak So-Young, Kim Yoojong, Woo Kyoungwan, Lee Sanghyun, Lim Yooseong, Yi Moonsuk

机构信息

Department of Electronics Engineering, Pusan National University, Busan 46241, Korea.

Department of Smart Hybrid Engineering, Pusan National University, Busan 46241, Korea.

出版信息

Sensors (Basel). 2019 Apr 22;19(8):1903. doi: 10.3390/s19081903.

Abstract

A strategy for improving the sensitivity of a sensor for detecting CO and NH gases is presented herein. The gas sensor was fabricated from ZnO metal oxide semiconductor nanostructures grown via a vapor⁻liquid⁻solid process and decorated with α-FeO nanoparticles via a sol⁻gel process. The response was enhanced by the formation of an α-FeO/ZnO n⁻n heterojunction and the growth of thinner wires. ZnO nanowires were grown on indium⁻tin⁻oxide glass electrodes using Sn as a catalyst for growth instead of Au. The structure and elemental composition were investigated using field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The gas sensing results indicate that the response value to 100 ppm CO was 18.8 at the optimum operating temperature of 300 °C.

摘要

本文提出了一种提高用于检测一氧化碳和氨气的传感器灵敏度的策略。该气体传感器由通过气-液-固过程生长的氧化锌金属氧化物半导体纳米结构制成,并通过溶胶-凝胶过程用α-氧化铁纳米颗粒进行修饰。通过形成α-氧化铁/氧化锌n-n异质结和生长更细的导线,响应得到了增强。使用锡作为生长催化剂而非金,在铟-锡-氧化物玻璃电极上生长氧化锌纳米线。利用场发射扫描电子显微镜、能量色散X射线光谱和X射线衍射对结构和元素组成进行了研究。气敏结果表明,在300℃的最佳工作温度下,对100 ppm一氧化碳的响应值为18.8。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fefb/6515385/553bbfbf4df9/sensors-19-01903-g001.jpg

相似文献

1
Improved Sensitivity of α-FeO Nanoparticle-Decorated ZnO Nanowire Gas Sensor for CO.
Sensors (Basel). 2019 Apr 22;19(8):1903. doi: 10.3390/s19081903.
3
Enhancing ZnO nanowire gas sensors using Au/FeO hybrid nanoparticle decoration.
Nanotechnology. 2020 Aug 7;31(32):325505. doi: 10.1088/1361-6528/ab89cf. Epub 2020 Apr 16.
4
Decoration of CuO NWs Gas Sensor with ZnO NPs for Improving NO Sensing Characteristics.
Sensors (Basel). 2021 Mar 17;21(6):2103. doi: 10.3390/s21062103.
5
Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO3, and SnO2 Nanowire Sensors.
ACS Appl Mater Interfaces. 2016 Feb;8(7):4828-37. doi: 10.1021/acsami.5b08638. Epub 2016 Feb 9.
6
Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties.
ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3650-6. doi: 10.1021/am300741r. Epub 2012 Jul 12.
7
High performance acetone sensor based on γ-FeO/Al-ZnO nanocomposites.
Nanotechnology. 2019 Feb 1;30(5):055502. doi: 10.1088/1361-6528/aaf069. Epub 2018 Dec 5.
8
Facile Hydrothermal Synthesis and Enhanced Methane Sensing Properties of Pt-Decorated ZnO Nanosheets.
J Nanosci Nanotechnol. 2018 May 1;18(5):3335-3340. doi: 10.1166/jnn.2018.14626.
9
Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature.
Nanoscale Res Lett. 2014 Sep 4;9(1):467. doi: 10.1186/1556-276X-9-467. eCollection 2014.
10
Highly Enhanced Sensing Properties for ZnO Nanoparticle-Decorated Round-Edged α-Fe₂O₃ Hexahedrons.
ACS Appl Mater Interfaces. 2015 Apr 29;7(16):8743-9. doi: 10.1021/acsami.5b01071. Epub 2015 Apr 20.

本文引用的文献

1
Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes.
Sensors (Basel). 2018 Dec 31;19(1):113. doi: 10.3390/s19010113.
2
3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review.
Sensors (Basel). 2018 May 7;18(5):1456. doi: 10.3390/s18051456.
6
A comparison of the ethanol sensing properties of α-iron oxide nanostructures prepared via the sol-gel and electrospinning techniques.
Nanotechnology. 2016 Feb 19;27(7):075502. doi: 10.1088/0957-4484/27/7/075502. Epub 2016 Jan 25.
7
Nanostructured Gas Sensors for Health Care: An Overview.
J Pers Nanomed. 2015 Jul;1(1):10-23. Epub 2015 Jul 27.
8
Gas sensors based on one dimensional nanostructured metal-oxides: a review.
Sensors (Basel). 2012;12(6):7207-58. doi: 10.3390/s120607207. Epub 2012 May 30.
9
Metal oxide gas sensors: sensitivity and influencing factors.
Sensors (Basel). 2010;10(3):2088-106. doi: 10.3390/s100302088. Epub 2010 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验