Lee Jeongseok, Lee Se-Hyeong, Bak So-Young, Kim Yoojong, Woo Kyoungwan, Lee Sanghyun, Lim Yooseong, Yi Moonsuk
Department of Electronics Engineering, Pusan National University, Busan 46241, Korea.
Department of Smart Hybrid Engineering, Pusan National University, Busan 46241, Korea.
Sensors (Basel). 2019 Apr 22;19(8):1903. doi: 10.3390/s19081903.
A strategy for improving the sensitivity of a sensor for detecting CO and NH gases is presented herein. The gas sensor was fabricated from ZnO metal oxide semiconductor nanostructures grown via a vapor⁻liquid⁻solid process and decorated with α-FeO nanoparticles via a sol⁻gel process. The response was enhanced by the formation of an α-FeO/ZnO n⁻n heterojunction and the growth of thinner wires. ZnO nanowires were grown on indium⁻tin⁻oxide glass electrodes using Sn as a catalyst for growth instead of Au. The structure and elemental composition were investigated using field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The gas sensing results indicate that the response value to 100 ppm CO was 18.8 at the optimum operating temperature of 300 °C.
本文提出了一种提高用于检测一氧化碳和氨气的传感器灵敏度的策略。该气体传感器由通过气-液-固过程生长的氧化锌金属氧化物半导体纳米结构制成,并通过溶胶-凝胶过程用α-氧化铁纳米颗粒进行修饰。通过形成α-氧化铁/氧化锌n-n异质结和生长更细的导线,响应得到了增强。使用锡作为生长催化剂而非金,在铟-锡-氧化物玻璃电极上生长氧化锌纳米线。利用场发射扫描电子显微镜、能量色散X射线光谱和X射线衍射对结构和元素组成进行了研究。气敏结果表明,在300℃的最佳工作温度下,对100 ppm一氧化碳的响应值为18.8。