文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于治疗脊髓损伤的纳米颗粒。

Nanoparticles for the treatment of spinal cord injury.

作者信息

Yang Qiwei, Lu Di, Wu Jiuping, Liang Fuming, Wang Huayi, Yang Junjie, Zhang Ganggang, Wang Chen, Yang Yanlian, Zhu Ling, Sun Xinzhi

机构信息

Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.

CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.

出版信息

Neural Regen Res. 2025 Jun 1;20(6):1665-1680. doi: 10.4103/NRR.NRR-D-23-01848. Epub 2024 May 13.


DOI:10.4103/NRR.NRR-D-23-01848
PMID:39104097
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11688544/
Abstract

Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.

摘要

脊髓损伤会导致运动、感觉和自主神经功能的显著丧失,给神经再生带来重大挑战。在损伤部位达到有效的治疗浓度一直是一个缓慢的过程,部分原因是有效给药存在困难。纳米颗粒具有靶向递送能力、生物相容性以及比传统药物更高的生物利用度,正受到脊髓损伤治疗领域的关注。本文综述探讨了现有治疗方法的当前机制和缺点,突出了基于纳米颗粒方法的优势和进展。我们详细介绍了脊髓损伤的纳米颗粒递送方法,包括局部和静脉注射、口服给药以及生物材料辅助植入,以及药物负载和表面修饰等策略。讨论还扩展到纳米颗粒如何有助于减轻氧化应激、抑制炎症、促进神经再生和促进血管生成。我们总结了各种类型纳米颗粒在治疗脊髓损伤中的应用,包括金属纳米颗粒、聚合物纳米颗粒、蛋白质基纳米颗粒、无机非金属纳米颗粒和脂质纳米颗粒。我们还讨论了所面临的挑战,如生物安全性、对人体的有效性、精确剂量控制、生产和表征的标准化、免疫反应以及体内靶向递送。此外,我们探讨了未来的发展方向,如提高生物安全性、标准化制造和表征过程以及推进人体试验。纳米颗粒在脊髓损伤的靶向递送和提高治疗效果方面已取得相当大的进展,在临床应用和药物开发方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/5c3a454f244f/NRR-20-1665-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/ffb94ced66e9/NRR-20-1665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/a10b078d83b9/NRR-20-1665-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/8d0bfd16ac09/NRR-20-1665-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/6ec6fd84a1f2/NRR-20-1665-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/f461ab8a8d80/NRR-20-1665-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/3a14c6d23b02/NRR-20-1665-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/5c3a454f244f/NRR-20-1665-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/ffb94ced66e9/NRR-20-1665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/a10b078d83b9/NRR-20-1665-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/8d0bfd16ac09/NRR-20-1665-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/6ec6fd84a1f2/NRR-20-1665-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/f461ab8a8d80/NRR-20-1665-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/3a14c6d23b02/NRR-20-1665-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2039/11688544/5c3a454f244f/NRR-20-1665-g007.jpg

相似文献

[1]
Nanoparticles for the treatment of spinal cord injury.

Neural Regen Res. 2025-6-1

[2]
Biomaterial-based strategies: a new era in spinal cord injury treatment.

Neural Regen Res. 2025-12-1

[3]
Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.

Stem Cell Res Ther. 2021-1-7

[4]
Hydrogel-based local drug delivery strategies for spinal cord repair.

Neural Regen Res. 2021-2

[5]
Nanoparticle-Based Delivery to Treat Spinal Cord Injury-a Mini-review.

AAPS PharmSciTech. 2021-3-12

[6]
Regenerative medicine approaches for the treatment of spinal cord injuries: Progress and challenges.

Acta Biomater. 2024-11

[7]
Minocycline-Loaded Poly(α-Lipoic Acid)-Methylprednisolone Prodrug Nanoparticles for the Combined Anti-Inflammatory Treatment of Spinal Cord Injury.

Int J Nanomedicine. 2022

[8]
Biomaterial-targeted precision nanoparticle delivery to the injured spinal cord.

Acta Biomater. 2022-10-15

[9]
Polysaccharides as a promising platform for the treatment of spinal cord injury: A review.

Carbohydr Polym. 2024-3-1

[10]
Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury.

Biomed Res Int. 2022

引用本文的文献

[1]
Early nanoparticle intervention preserves motor function following cervical spinal cord injury.

Bioeng Transl Med. 2025-4-29

[2]
Trends in the application of chondroitinase ABC in injured spinal cord repair.

Neural Regen Res. 2026-4-1

[3]
Sirtuin1 in Spinal Cord Injury: Regulatory Mechanisms, Microenvironment Remodeling and Therapeutic Potential.

CNS Neurosci Ther. 2025-2

[4]
Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications.

Int J Mol Sci. 2024-12-11

本文引用的文献

[1]
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning.

Neural Regen Res. 2024-12-1

[2]
Resident immune responses to spinal cord injury: role of astrocytes and microglia.

Neural Regen Res. 2024-8-1

[3]
Neurogenesis in primates versus rodents and the value of non-human primate models.

Natl Sci Rev. 2023-9-15

[4]
Smart nanoparticles for cancer therapy.

Signal Transduct Target Ther. 2023-11-3

[5]
Epidemiological and clinical features, treatment status, and economic burden of traumatic spinal cord injury in China: a hospital-based retrospective study.

Neural Regen Res. 2024-5

[6]
Applications and safety of gold nanoparticles as therapeutic devices in clinical trials.

J Pharm Anal. 2023-9

[7]
Recent advances in lipid nanovesicles for targeted treatment of spinal cord injury.

Front Bioeng Biotechnol. 2023-8-16

[8]
From Bench to Bedside: Implications of Lipid Nanoparticle Carrier Reactogenicity for Advancing Nucleic Acid Therapeutics.

Pharmaceuticals (Basel). 2023-7-31

[9]
Translational Selenium Nanoparticles to Attenuate Allergic Dermatitis through Nrf2-Keap1-Driven Activation of Selenoproteins.

ACS Nano. 2023-7-25

[10]
Selective organ targeting nanoparticles: from design to clinical translation.

Nanoscale Horiz. 2023-8-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索