Yang Qiwei, Lu Di, Wu Jiuping, Liang Fuming, Wang Huayi, Yang Junjie, Zhang Ganggang, Wang Chen, Yang Yanlian, Zhu Ling, Sun Xinzhi
Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
Neural Regen Res. 2025 Jun 1;20(6):1665-1680. doi: 10.4103/NRR.NRR-D-23-01848. Epub 2024 May 13.
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.
脊髓损伤会导致运动、感觉和自主神经功能的显著丧失,给神经再生带来重大挑战。在损伤部位达到有效的治疗浓度一直是一个缓慢的过程,部分原因是有效给药存在困难。纳米颗粒具有靶向递送能力、生物相容性以及比传统药物更高的生物利用度,正受到脊髓损伤治疗领域的关注。本文综述探讨了现有治疗方法的当前机制和缺点,突出了基于纳米颗粒方法的优势和进展。我们详细介绍了脊髓损伤的纳米颗粒递送方法,包括局部和静脉注射、口服给药以及生物材料辅助植入,以及药物负载和表面修饰等策略。讨论还扩展到纳米颗粒如何有助于减轻氧化应激、抑制炎症、促进神经再生和促进血管生成。我们总结了各种类型纳米颗粒在治疗脊髓损伤中的应用,包括金属纳米颗粒、聚合物纳米颗粒、蛋白质基纳米颗粒、无机非金属纳米颗粒和脂质纳米颗粒。我们还讨论了所面临的挑战,如生物安全性、对人体的有效性、精确剂量控制、生产和表征的标准化、免疫反应以及体内靶向递送。此外,我们探讨了未来的发展方向,如提高生物安全性、标准化制造和表征过程以及推进人体试验。纳米颗粒在脊髓损伤的靶向递送和提高治疗效果方面已取得相当大的进展,在临床应用和药物开发方面具有巨大潜力。
Neural Regen Res. 2025-6-1
Neural Regen Res. 2025-12-1
Stem Cell Res Ther. 2021-1-7
Neural Regen Res. 2021-2
AAPS PharmSciTech. 2021-3-12
Acta Biomater. 2022-10-15
Carbohydr Polym. 2024-3-1
Bioeng Transl Med. 2025-4-29
Neural Regen Res. 2026-4-1
Neural Regen Res. 2024-8-1
Natl Sci Rev. 2023-9-15
Signal Transduct Target Ther. 2023-11-3
Front Bioeng Biotechnol. 2023-8-16
Pharmaceuticals (Basel). 2023-7-31
Nanoscale Horiz. 2023-8-21