Suppr超能文献

基于 MRI 的宫颈癌放射组学特征的可重复性和可再现性。

Repeatability and reproducibility of MRI-based radiomic features in cervical cancer.

机构信息

Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.

Department of Medicine, Medical Biophysics, University of Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.

出版信息

Radiother Oncol. 2019 Jun;135:107-114. doi: 10.1016/j.radonc.2019.03.001. Epub 2019 Mar 19.

Abstract

PURPOSE

The aims of this study are to evaluate the stability of radiomic features from T2-weighted MRI of cervical cancer in three ways: (1) repeatability via test-retest; (2) reproducibility between diagnostic MRI and simulation MRI; (3) reproducibility in inter-observer setting.

MATERIALS AND METHODS

This retrospective cohort study included FIGO stage IB-IVA cervical cancer patients treated with chemoradiation between 2005 and 2014. There were three cohorts of women corresponding to each aim of the study: (1) 8 women who underwent test-retest MRI; (2) 20 women who underwent MRI on different scanners (diagnostic and simulation MRI); (3) 34 women whose diagnostic MRIs were contoured by three observers. Radiomic features based on first-order statistics, shape features and texture features were extracted from the original, Laplacian of Gaussian (LoG)-filtered and wavelet-filtered images, for a total of 1761 features. Stability of radiomic features was assessed using intraclass correlation coefficient (ICC).

RESULTS

The inter-observer cohort had the most reproducible features (95.2% with ICC ≥0.75) whereas the diagnostic-simulation cohort had the fewest (14.1% with ICC ≥0.75). Overall, 229 features had ICC ≥0.75 in all three tests. Shape features emerged as the most stable features in all cohorts.

CONCLUSION

The diagnostic-simulation test resulted in the fewest reproducible features. Further research in MRI-based radiomics is required to validate the use of reproducible features in prognostic models.

摘要

目的

本研究旨在通过三种方式评估宫颈癌 T2 加权 MRI 中放射组学特征的稳定性:(1)通过测试-再测试评估重复性;(2)评估诊断 MRI 和模拟 MRI 之间的可重复性;(3)在观察者间评估可重复性。

材料和方法

本回顾性队列研究纳入了 2005 年至 2014 年间接受放化疗的FIGO 分期 IB-IVA 宫颈癌患者。根据研究的三个目标,共纳入了三批女性患者:(1)8 名进行测试-再测试 MRI 的女性患者;(2)20 名在不同扫描仪(诊断和模拟 MRI)上进行 MRI 的女性患者;(3)34 名由三位观察者进行诊断 MRI 轮廓勾画的女性患者。从原始图像、拉普拉斯高斯(LoG)滤波图像和小波滤波图像中提取基于一阶统计、形状特征和纹理特征的放射组学特征,共提取了 1761 个特征。使用组内相关系数(ICC)评估放射组学特征的稳定性。

结果

观察者间组的特征具有最高的可重复性(95.2%的 ICC≥0.75),而诊断-模拟组的特征最少(14.1%的 ICC≥0.75)。总体而言,在所有三种测试中,有 229 个特征的 ICC≥0.75。在所有队列中,形状特征都是最稳定的特征。

结论

诊断-模拟测试导致的可重复性特征最少。需要进一步研究 MRI 基放射组学,以验证可重复性特征在预后模型中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验