用于神经回路参数推断的Python工具箱。
A Python toolbox for neural circuit parameter inference.
作者信息
Orozco Valero Alejandro, Rodríguez-González Víctor, Montobbio Noemi, Casal Miguel A, Tlaie Alejandro, Pelayo Francisco, Morillas Christian, Poza Jesús, Gómez Carlos, Martínez-Cañada Pablo
机构信息
Research Center for Information and Communication Technologies (CITIC), University of Granada, Granada, Spain.
Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.
出版信息
NPJ Syst Biol Appl. 2025 May 9;11(1):45. doi: 10.1038/s41540-025-00527-9.
Computational research tools have reached a level of maturity that enables efficient simulation of neural activity across diverse scales. Concurrently, experimental neuroscience is experiencing an unprecedented scale of data generation. Despite these advancements, our understanding of the precise mechanistic relationship between neural recordings and key aspects of neural activity remains insufficient, including which specific features of electrophysiological population dynamics (i.e., putative biomarkers) best reflect properties of the underlying microcircuit configuration. We present ncpi, an open-source Python toolbox that serves as an all-in-one solution, effectively integrating well-established methods for both forward and inverse modeling of extracellular signals based on single-neuron network model simulations. Our tool serves as a benchmarking resource for model-driven interpretation of electrophysiological data and the evaluation of candidate biomarkers that plausibly index changes in neural circuit parameters. Using mouse LFP data and human EEG recordings, we demonstrate the potential of ncpi to uncover imbalances in neural circuit parameters during brain development and in Alzheimer's Disease.
计算研究工具已达到成熟水平,能够跨不同尺度高效模拟神经活动。与此同时,实验神经科学正经历着前所未有的数据生成规模。尽管有这些进展,但我们对神经记录与神经活动关键方面之间精确的机制关系的理解仍然不足,包括电生理群体动力学的哪些特定特征(即假定的生物标志物)最能反映潜在微电路配置的特性。我们展示了ncpi,这是一个开源的Python工具箱,它作为一个一体化解决方案,基于单神经元网络模型模拟有效地集成了用于细胞外信号正向和反向建模的成熟方法。我们的工具作为一个基准资源,用于对电生理数据进行模型驱动的解释以及评估可能指示神经回路参数变化的候选生物标志物。使用小鼠局部场电位(LFP)数据和人类脑电图记录,我们展示了ncpi在揭示大脑发育过程中和阿尔茨海默病中神经回路参数失衡方面的潜力。