Chambers Brendan, MacLean Jason N
Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois, United States of America.
Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America.
PLoS Comput Biol. 2016 Aug 19;12(8):e1005078. doi: 10.1371/journal.pcbi.1005078. eCollection 2016 Aug.
Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex.
将突触连接性与动力学联系起来是理解新皮质信息处理的关键。电路动力学源自相互连接的神经元之间的复杂相互作用,这就需要在网络层面评估连接性与动力学之间的联系。在这里,我们绘制了来自小鼠新皮质的大型神经元群体中的传播活动,并将其与一个循环网络模型进行比较,在该模型中,连接性可以被精确测量和操纵。我们发现,一种动力学特征主导了新皮质和模型中传播活动的统计描述:由扇入三角形基序组成的汇聚簇,其中两个输入神经元相互连接。扇入三角形在持续活动期间协调突触前输入的时间,以有效地产生突触后尖峰。结果,矛盾的是,即使在随机连接的循环网络中,扇入三角形也主导了尖峰传播的统计。高阶突触连接性与神经元的整合特性之间的相互作用限制了网络动力学的结构,并塑造了新皮质中信息的路由。