Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India.
Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India.
Neuroradiology. 2019 Jul;61(7):803-810. doi: 10.1007/s00234-019-02209-w. Epub 2019 Apr 25.
Our aim is to investigate whether rs-fMRI can be used as an effective technique to study language lateralization. We aim to find out the most appropriate language network among different networks identified using ICA.
Fifteen healthy right-handed subjects, sixteen left, and sixteen right temporal lobe epilepsy patients prospectively underwent MR scanning in 3T MRI (GE Discovery™ MR750w), using optimized imaging protocol. We obtained task-fMRI data using a visual-verb generation paradigm. Rs-fMRI and language-fMRI analysis were conducted using FSL software. Independent component analysis (ICA) was used to estimate rs-fMRI networks. Dice coefficient was calculated to examine the similarity in activated voxels of a common language template and the rs-fMRI language networks. Laterality index (LI) was calculated from the task-based language activation and rs-fMRI language network, for a range of LI thresholds at different z scores.
Measurement of hemispheric language dominance with rs-fMRI was highly concordant with task-fMRI results. Among the evaluated z scores for a range of LI thresholds, rs-fMRI yielded a maximum accuracy of 95%, a sensitivity of 83%, and specificity of 92.8% for z = 2 at 0.05 LI threshold.
The present study suggests that rs-fMRI networks obtained using ICA technique can be used as an alternative for task-fMRI language laterality. The novel aspect of the work is suggestive of optimal thresholds while applying rs-fMRI, is an important endeavor given that many patients with epilepsy have co-morbid cognitive deficits. Thus, an accurate method to determine language laterality without requiring a patient to complete the language task would be advantageous.
本研究旨在探讨 rs-fMRI 是否可作为一种有效的技术来研究语言侧化。我们旨在确定在使用 ICA 识别的不同网络中,哪种网络最适合作为语言网络。
15 名健康的右利手受试者、16 名左利手受试者和 16 名右颞叶癫痫患者前瞻性地在 3T MRI(GE Discovery™ MR750w)上进行了磁共振扫描,使用优化的成像方案。我们使用视觉动词生成范式获得任务 fMRI 数据。rs-fMRI 和语言 fMRI 分析使用 FSL 软件进行。使用独立成分分析(ICA)来估计 rs-fMRI 网络。计算 Dice 系数以检查共同语言模板和 rs-fMRI 语言网络的激活体素之间的相似性。从任务为基础的语言激活和 rs-fMRI 语言网络计算侧化指数(LI),用于不同 z 分数的一系列 LI 阈值。
使用 rs-fMRI 测量半球语言优势与任务 fMRI 结果高度一致。在所评估的 z 分数范围内,对于不同的 LI 阈值,rs-fMRI 在 z=2 时,LI 阈值为 0.05,可获得最高的准确性(95%)、敏感性(83%)和特异性(92.8%)。
本研究表明,使用 ICA 技术获得的 rs-fMRI 网络可作为任务 fMRI 语言侧化的替代方法。本研究的新颖之处在于,在应用 rs-fMRI 时提示了最佳的阈值,这在许多癫痫患者存在共患认知缺陷的情况下是一项重要的努力。因此,无需患者完成语言任务即可确定语言侧化的准确方法将是有利的。