Suppr超能文献

多尺度尖峰-场活动动力学建模与识别框架

A Multiscale Dynamical Modeling and Identification Framework for Spike-Field Activity.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1128-1138. doi: 10.1109/TNSRE.2019.2913218. Epub 2019 Apr 25.

Abstract

Dynamical encoding models characterize neural activity with low-dimensional hidden states that dynamically evolve in time and gienerate behavior. Current methods have identified these models from single-scale activity, either spikes or fields. However, behavior is simultaneously encoded across multiple spatiotemporal scales of activity, from spikes of individual neurons to neural population activity measured through fields. Identifying a multiscale dynamical model to extract hidden states that simultaneously describe spike-field activities is challenging because of their fundamental differences. Spikes are binary-valued with fast millisecond time-scales while fields are continuous-valued with slower time-scales. Here, we develop a novel multiscale dynamical modeling and identification algorithm to simultaneously characterize multiscale spike-field dynamics and extract multiscale hidden states. We also devise a modal approach to dissociate task-relevant and task-irrelevant dynamics. Using extensive simulations, we show that the algorithm accurately identifies a multiscale dynamical model to simultaneously describe spike-field dynamics. Furthermore, the algorithm extracts hidden states that are multiscale, i.e., contain information from both spikes and fields and accurately predict behavior. Finally, the algorithm detects which of the identified dynamics are task-relevant and to what extent. This multiscale dynamical modeling and identification framework can help study neural dynamics across spatiotemporal scales and may facilitate future neurotechnologies.

摘要

动力编码模型用随时间动态变化的低维隐状态来描述神经活动,并产生行为。目前的方法已经从单尺度活动(无论是尖峰还是场)中识别出这些模型。然而,行为同时在多个时空尺度的活动中被编码,从单个神经元的尖峰到通过场测量的神经元群体活动。由于它们的基本差异,识别一个能够同时描述尖峰-场活动的多尺度动力模型以提取隐状态是具有挑战性的。尖峰是具有快速毫秒时间尺度的二进制值,而场是具有较慢时间尺度的连续值。在这里,我们开发了一种新的多尺度动力建模和识别算法,以同时描述多尺度尖峰-场动力学并提取多尺度隐状态。我们还设计了一种模态方法来分离任务相关和任务无关的动力学。通过广泛的模拟,我们表明该算法能够准确地识别出一个多尺度动力模型,以同时描述尖峰-场动力学。此外,该算法提取的隐状态是多尺度的,即包含来自尖峰和场的信息,并能准确地预测行为。最后,该算法检测到所识别的动力学中有哪些是与任务相关的,以及相关的程度。这个多尺度动力建模和识别框架可以帮助研究跨时空尺度的神经动力学,并可能促进未来的神经技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验