Chang Siyuan, Wang Jiang, Zhu Yulin, Wei Xile, Deng Bin, Li Huiyan, Liu Chen
School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China.
School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China.
Cogn Neurodyn. 2023 Apr;17(2):467-476. doi: 10.1007/s11571-022-09822-1. Epub 2022 Jun 7.
In order to improve the modeling performance of Volterra sequence for nonlinear neural activity, in this paper, a new optimization algorithm is proposed to identify Volterra sequence parameters. Algorithm combines the advantages of particle swarm optimization (PSO) and genetic algorithm (GA) improve the performance of the identification of nonlinear model parameters from rapidity and accuracy. In the modeling experiments of neural signal data generated by the neural computing model and clinical neural data set in this paper, the proposed algorithm shows its excellent potential in nonlinear neural activity modeling. Compared with PSO and GA, the algorithm can achieve less identification error, and better balance the convergence speed and identification error. Further, we explore the influence of algorithm parameters on identification efficiency, which provides possible guiding significance for parameter setting in practical application of the algorithm.
为了提高Volterra序列对非线性神经活动的建模性能,本文提出了一种新的优化算法来识别Volterra序列参数。该算法结合了粒子群优化算法(PSO)和遗传算法(GA)的优点,从速度和准确性方面提高了非线性模型参数识别的性能。在本文由神经计算模型生成的神经信号数据和临床神经数据集的建模实验中,所提出的算法在非线性神经活动建模中显示出其优异的潜力。与PSO和GA相比,该算法能够实现更小的识别误差,并且能更好地平衡收敛速度和识别误差。此外,我们还探讨了算法参数对识别效率的影响,这为该算法在实际应用中的参数设置提供了可能的指导意义。