Suppr超能文献

使用带有遗传算法增强粒子群优化算法的沃尔泰拉级数对神经活动进行非线性动力学建模。

Nonlinear dynamical modeling of neural activity using volterra series with GA-enhanced particle swarm optimization algorithm.

作者信息

Chang Siyuan, Wang Jiang, Zhu Yulin, Wei Xile, Deng Bin, Li Huiyan, Liu Chen

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China.

School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China.

出版信息

Cogn Neurodyn. 2023 Apr;17(2):467-476. doi: 10.1007/s11571-022-09822-1. Epub 2022 Jun 7.

Abstract

In order to improve the modeling performance of Volterra sequence for nonlinear neural activity, in this paper, a new optimization algorithm is proposed to identify Volterra sequence parameters. Algorithm combines the advantages of particle swarm optimization (PSO) and genetic algorithm (GA) improve the performance of the identification of nonlinear model parameters from rapidity and accuracy. In the modeling experiments of neural signal data generated by the neural computing model and clinical neural data set in this paper, the proposed algorithm shows its excellent potential in nonlinear neural activity modeling. Compared with PSO and GA, the algorithm can achieve less identification error, and better balance the convergence speed and identification error. Further, we explore the influence of algorithm parameters on identification efficiency, which provides possible guiding significance for parameter setting in practical application of the algorithm.

摘要

为了提高Volterra序列对非线性神经活动的建模性能,本文提出了一种新的优化算法来识别Volterra序列参数。该算法结合了粒子群优化算法(PSO)和遗传算法(GA)的优点,从速度和准确性方面提高了非线性模型参数识别的性能。在本文由神经计算模型生成的神经信号数据和临床神经数据集的建模实验中,所提出的算法在非线性神经活动建模中显示出其优异的潜力。与PSO和GA相比,该算法能够实现更小的识别误差,并且能更好地平衡收敛速度和识别误差。此外,我们还探讨了算法参数对识别效率的影响,这为该算法在实际应用中的参数设置提供了可能的指导意义。

相似文献

1
Nonlinear dynamical modeling of neural activity using volterra series with GA-enhanced particle swarm optimization algorithm.
Cogn Neurodyn. 2023 Apr;17(2):467-476. doi: 10.1007/s11571-022-09822-1. Epub 2022 Jun 7.
2
A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
Front Bioeng Biotechnol. 2022 May 19;10:832829. doi: 10.3389/fbioe.2022.832829. eCollection 2022.
3
Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization.
Heliyon. 2023 Jan 5;9(1):e12802. doi: 10.1016/j.heliyon.2023.e12802. eCollection 2023 Jan.
4
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.
Comput Intell Neurosci. 2017;2017:2782679. doi: 10.1155/2017/2782679. Epub 2017 May 25.
5
Adaptive infinite impulse response system identification using modified-interior search algorithm with Lèvy flight.
ISA Trans. 2017 Mar;67:266-279. doi: 10.1016/j.isatra.2016.10.018. Epub 2017 Jan 30.
6
Optimizing multi-objective task scheduling in fog computing with GA-PSO algorithm for big data application.
Front Big Data. 2024 Feb 21;7:1358486. doi: 10.3389/fdata.2024.1358486. eCollection 2024.
9
Particle Swarm Optimization Algorithm With Self-Organizing Mapping for Nash Equilibrium Strategy in Application of Multiobjective Optimization.
IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):5179-5193. doi: 10.1109/TNNLS.2020.3027293. Epub 2021 Oct 27.
10
Quantum-behaved particle swarm optimization based on solitons.
Sci Rep. 2022 Aug 17;12(1):13977. doi: 10.1038/s41598-022-18351-0.

本文引用的文献

1
The adjustment mechanism of the spike and wave discharges in thalamic neurons: a simulation analysis.
Cogn Neurodyn. 2022 Dec;16(6):1449-1460. doi: 10.1007/s11571-022-09788-0. Epub 2022 Feb 15.
2
Model-based optogenetic stimulation to regulate beta oscillations in Parkinsonian neural networks.
Cogn Neurodyn. 2022 Jun;16(3):667-681. doi: 10.1007/s11571-021-09729-3. Epub 2021 Oct 16.
3
A dynamics model of neuron-astrocyte network accounting for febrile seizures.
Cogn Neurodyn. 2022 Apr;16(2):411-423. doi: 10.1007/s11571-021-09706-w. Epub 2021 Sep 18.
4
Review of brain encoding and decoding mechanisms for EEG-based brain-computer interface.
Cogn Neurodyn. 2021 Aug;15(4):569-584. doi: 10.1007/s11571-021-09676-z. Epub 2021 Apr 10.
5
Nonlinear System Identification of Neural Systems from Neurophysiological Signals.
Neuroscience. 2021 Mar 15;458:213-228. doi: 10.1016/j.neuroscience.2020.12.001. Epub 2020 Dec 11.
6
Model Predictive Control for Seizure Suppression Based on Nonlinear Auto-Regressive Moving-Average Volterra Model.
IEEE Trans Neural Syst Rehabil Eng. 2020 Oct;28(10):2173-2183. doi: 10.1109/TNSRE.2020.3014927. Epub 2020 Aug 7.
7
Model-Based Evaluation of Closed-Loop Deep Brain Stimulation Controller to Adapt to Dynamic Changes in Reference Signal.
Front Neurosci. 2019 Sep 10;13:956. doi: 10.3389/fnins.2019.00956. eCollection 2019.
9
Dynamic network modeling and dimensionality reduction for human ECoG activity.
J Neural Eng. 2019 Aug 14;16(5):056014. doi: 10.1088/1741-2552/ab2214.
10
A Multiscale Dynamical Modeling and Identification Framework for Spike-Field Activity.
IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1128-1138. doi: 10.1109/TNSRE.2019.2913218. Epub 2019 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验