Suppr超能文献

基于稀疏模型的高维场和尖峰多尺度网络中功能依赖关系的估计。

Sparse model-based estimation of functional dependence in high-dimensional field and spike multiscale networks.

机构信息

Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America.

出版信息

J Neural Eng. 2019 Sep 10;16(5):056022. doi: 10.1088/1741-2552/ab225b.

Abstract

OBJECTIVE

Behavior is encoded across multiple scales of brain activity, from binary neuronal spikes to continuous fields including local field potentials (LFP). Multiscale models need to describe both the encoding of behavior and the conditional dependencies in simultaneously recorded spike and field signals, which form a high-dimensional multiscale network. However, learning spike-field dependencies in high-dimensional recordings is challenging due to the prohibitively large number of spike-field signal pairs, which makes standard learning techniques subject to overfitting.

APPROACH

We present a sparse model-based estimation algorithm to learn these multiscale network dependencies. We develop a multiscale encoding model consisting of a point process model of binary spikes for each neuron whose firing rate is a function of the LFP network features and behavioral states. Doing so, spike-field dependencies constitute the model parameters to be learned. We resolve the parameter learning challenge by forming a constrained optimization problem to maximize the likelihood with an L1 penalty term that eases the detection of significant spike-LFP dependencies. We then apply the Akaike information criterion (AIC) to force a sparse number of nonzero dependency parameters in the model.

MAIN RESULTS

We validate the algorithm using simulations and spike-field data from two non-human primates (NHP) in a 3D motor task with motor cortical recordings and a pro-saccade visual task with prefrontal recordings. We find that by identifying a model with a sparse set of dependency parameters, the algorithm improves spike prediction compared with models without dependencies. Further, the algorithm identifies significantly fewer dependency parameters compared with standard methods while improving their spike prediction likely due to detecting fewer spurious dependencies. Also, spike prediction on any electrode improves by including LFP features from all electrodes compared with using only those on the same electrode. Finally, unlike standard methods, the algorithm uncovers patterns of spike-field network dependencies as a function of distance, brain region, and frequency band.

SIGNIFICANCE

This algorithm can help study functional dependencies in high-dimensional spike-field networks and leads to more accurate multiscale encoding models.

摘要

目的

行为是通过大脑活动的多个尺度来编码的,从二进制神经元尖峰到包括局部场电位(LFP)在内的连续场。多尺度模型需要描述行为的编码以及同时记录的尖峰和场信号中的条件依赖性,这些信号形成了一个高维多尺度网络。然而,由于尖峰-场信号对的数量极大,标准的学习技术容易出现过拟合,因此在高维记录中学习尖峰-场的依赖性具有挑战性。

方法

我们提出了一种基于稀疏模型的估计算法来学习这些多尺度网络依赖性。我们开发了一个多尺度编码模型,该模型由每个神经元的泊松点过程模型组成,其发放率是 LFP 网络特征和行为状态的函数。这样,尖峰-场的依赖性构成了要学习的模型参数。我们通过形成一个最大化似然的约束优化问题,并使用 L1 惩罚项来缓解检测显著尖峰-LFP 依赖性的问题,从而解决参数学习的挑战。然后,我们应用赤池信息量准则(AIC)来强制模型中仅有少量非零的依赖参数。

主要结果

我们使用来自两只非人类灵长类动物(NHP)的模拟数据和运动皮层记录的 3D 运动任务以及前额叶记录的前向眼动任务的尖峰-场数据来验证该算法。我们发现,通过确定具有稀疏依赖参数集的模型,该算法与没有依赖性的模型相比,可以提高尖峰预测的准确性。此外,与标准方法相比,该算法识别的依赖参数显著减少,同时提高了尖峰预测的准确性,可能是因为检测到的虚假依赖性更少。此外,与仅使用相同电极上的 LFP 特征相比,将所有电极的 LFP 特征包括在内,任何电极的尖峰预测都会得到改善。最后,与标准方法不同的是,该算法揭示了尖峰-场网络依赖性作为距离、脑区和频带函数的模式。

意义

该算法可以帮助研究高维尖峰-场网络中的功能依赖性,并导致更准确的多尺度编码模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验