Suppr超能文献

N-MEA 探针:挖掘神经元网络。

N-MEA Probes: Scooping Neuronal Networks.

作者信息

Kireev Dmitry, Rincón Montes Viviana, Stevanovic Jelena, Srikantharajah Kagithiri, Offenhäusser Andreas

机构信息

Forschungszentrum Jülich, Institute of Bioelectronics (ICS-8), Jülich, Germany.

Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, United States.

出版信息

Front Neurosci. 2019 Apr 10;13:320. doi: 10.3389/fnins.2019.00320. eCollection 2019.

Abstract

In the current work, we introduce a brand new line of versatile, flexible, and multifunctional MEA probes, the so-called , or N-MEAs. Material choice, dimensions, and room for further upgrade, were carefully considered when designing such probes in order to cover the widest application range possible. Proof of the operation principle of these novel probes is shown in the manuscript via the recording of extracellular signals, such as action potentials and local field potentials from cardiac cells and retinal ganglion cells of the heart tissue and eye respectively. Reasonably large signal to noise ratio (SNR) combined with effortless operation of the devices, mechanical and chemical stability, multifunctionality provide, in our opinion, an unprecedented blend. We show successful recordings of (1) action potentials from heart tissue with a SNR up to 13.2; (2) spontaneous activity of retinal ganglion cells with a SNR up to 12.8; and (3) local field potentials with an ERG-like waveform, as well as spiking responses of the retina to light stimulation. The results reveal not only the multi-functionality of these N-MEAs, but high quality recordings of electrogenic tissues.

摘要

在当前的工作中,我们推出了全新系列的多功能、灵活且具有多种功能的微电极阵列(MEA)探头,即所谓的 ,或N-MEA。在设计此类探头时,我们仔细考虑了材料选择、尺寸以及进一步升级的空间,以便尽可能覆盖最广泛的应用范围。通过记录细胞外信号,如分别来自心脏组织的心脏细胞和眼睛的视网膜神经节细胞的动作电位和局部场电位,本文展示了这些新型探头的工作原理。在我们看来,合理的大信噪比(SNR)、设备操作简便、机械和化学稳定性以及多功能性提供了前所未有的组合。我们成功记录了:(1)来自心脏组织的动作电位,信噪比高达13.2;(2)视网膜神经节细胞的自发活动,信噪比高达12.8;(3)具有类似视网膜电图波形的局部场电位,以及视网膜对光刺激的尖峰反应。结果不仅揭示了这些N-MEA的多功能性,还展示了对电活动组织的高质量记录。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d6f/6467947/ed6315844bb1/fnins-13-00320-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验