Suppr超能文献

通过系统评价和基于机器学习的终点定义来优化疾病小鼠模型中的人文终点。

Refining humane endpoints in mouse models of disease by systematic review and machine learning-based endpoint definition.

机构信息

Department of Neurology and Department of Experimental Neurology, Neurocure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

German Federal Institute for Risk Assessment, German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany.

出版信息

ALTEX. 2019;36(4):555-571. doi: 10.14573/altex.1812231. Epub 2019 Apr 18.

Abstract

Ideally, humane endpoints allow for early termination of experiments by minimizing an animal's discomfort, distress and pain, while ensuring that scientific objectives are reached. Yet, lack of commonly agreed methodology and heterogeneity of cut-off values published in the literature remain a challenge to the accurate determination and application of humane endpoints. With the aim to synthesize and appraise existing humane endpoint definitions for commonly used physiological parameters, we conducted a systematic review of mouse studies of acute and chronic disease models, which used body weight, temperature and/or sickness scores for endpoint definition. In the second part of the study, we used previously published and unpublished data on weight, temperature and sickness scores from mouse models of sepsis and stroke and applied machine learning algorithms to assess the usefulness of this method for parameter selection and endpoint definition across models. Studies were searched for in two electronic databases (MEDLINE/Pubmed and Embase). Out of 110 retrieved full-text manuscripts, 34 studies were included. We found large intra- and inter-model variance in humane endpoint determination and application due to varying animal models, lack of standardized experimental protocols and heterogeneity of performance metrics (part 1). Machine learning models trained with physiological data and sickness severity score or modified DeSimoni neuroscore identified animals with a high risk of death at an early time point in both mouse models of stroke (male: 93.2% at 72h post-treatment; female: 93.0% at 48h post-treatment) and sepsis (96.2% at 24h post-treatment), thus demonstrating generalizability in endpoint determination across models (part 2).

摘要

理想情况下,人性化终点通过将动物的不适、痛苦和疼痛最小化来允许尽早终止实验,同时确保达到科学目标。然而,缺乏普遍同意的方法和文献中公布的截止值的异质性仍然是准确确定和应用人性化终点的挑战。为了综合和评估常用于生理参数的人性化终点定义,我们对使用体重、体温和/或疾病评分来定义终点的急性和慢性疾病模型的小鼠研究进行了系统综述。在研究的第二部分,我们使用了先前发表和未发表的关于败血症和中风小鼠模型的体重、体温和疾病评分数据,并应用机器学习算法来评估该方法在模型间参数选择和终点定义中的有用性。研究在两个电子数据库(MEDLINE/Pubmed 和 Embase)中进行了搜索。在检索到的 110 篇全文手稿中,有 34 篇被纳入。我们发现由于不同的动物模型、缺乏标准化的实验方案以及性能指标的异质性,人性化终点的确定和应用存在很大的模型内和模型间差异(第 1 部分)。使用生理数据和疾病严重程度评分或改良的 DeSimoni 神经评分训练的机器学习模型可在中风(雄性:治疗后 72 小时内 93.2%;雌性:治疗后 48 小时内 93.0%)和败血症(治疗后 24 小时内 96.2%)的小鼠模型中早期识别出死亡风险高的动物,从而证明了模型间终点确定的可推广性(第 2 部分)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验