Suppr超能文献

重新思考临床前研究中的动物损耗:使用有向无环图表达选择偏倚的因果机制。

Rethinking animal attrition in preclinical research: Expressing causal mechanisms of selection bias using directed acyclic graphs.

作者信息

Collazo Anja, Kuhn Hans-Georg, Kurth Tobias, Piccininni Marco, Rohmann Jessica L

机构信息

BIH QUEST Center for Responsible Research, Berlin Institute of Health, Berlin, Germany.

Institute of Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.

出版信息

J Cereb Blood Flow Metab. 2025 Feb;45(2):340-351. doi: 10.1177/0271678X241275760. Epub 2024 Aug 20.

Abstract

Animal attrition in preclinical experiments can introduce bias in the estimation of causal treatment effects, as the treatment-outcome association in surviving animals may not represent the causal effect of interest. This can compromise the internal validity of the study despite randomization at the outset. Directed Acyclic Graphs (DAGs) are useful tools to transparently visualize assumptions about the causal structure underlying observed data. By illustrating relationships between relevant variables, DAGs enable the detection of even less intuitive biases, and can thereby inform strategies for their mitigation. In this study, we present an illustrative causal model for preclinical stroke research, in which animal attrition induces a specific type of selection bias (i.e., collider stratification bias) due to the interplay of animal welfare, initial disease severity and negative side effects of treatment. Even when the treatment had no causal effect, our simulations revealed substantial bias across different scenarios. We show how researchers can detect and potentially mitigate this bias in the analysis phase, even when only data from surviving animals are available, if knowledge of the underlying causal process that gave rise to the data is available. Collider stratification bias should be a concern in preclinical animal studies with severe side effects and high post-randomization attrition.

摘要

临床前实验中的动物损耗可能会在因果治疗效果的估计中引入偏差,因为存活动物的治疗-结果关联可能并不代表感兴趣的因果效应。尽管在实验开始时进行了随机分组,但这仍可能损害研究的内部有效性。有向无环图(DAG)是一种有用的工具,可用于透明地可视化关于观察数据背后因果结构的假设。通过说明相关变量之间的关系,有向无环图能够检测出甚至不太直观的偏差,从而为减轻这些偏差的策略提供信息。在本研究中,我们提出了一个用于临床前中风研究的说明性因果模型,其中由于动物福利、初始疾病严重程度和治疗的负面副作用之间的相互作用,动物损耗会导致一种特定类型的选择偏差(即对撞分层偏差)。即使治疗没有因果效应,我们的模拟也揭示了不同情况下的显著偏差。我们展示了研究人员如何在分析阶段检测并可能减轻这种偏差,即使只有存活动物的数据可用,前提是了解产生这些数据的潜在因果过程。在具有严重副作用和高随机分组后损耗的临床前动物研究中,对撞分层偏差应引起关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2101/11800270/9c25a9320a02/10.1177_0271678X241275760-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验