Roche Pharma Research and Early Development, Clinical Pharmacology Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
IAME, UMR 1137, INSERM, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
Pharm Res. 2017 Oct;34(10):2109-2118. doi: 10.1007/s11095-017-2216-1. Epub 2017 Jul 10.
This manuscript aims to precisely describe the natural disease progression of Parkinson's disease (PD) patients and evaluate approaches to increase the drug effect detection power.
An item response theory (IRT) longitudinal model was built to describe the natural disease progression of 423 de novo PD patients followed during 48 months while taking into account the heterogeneous nature of the MDS-UPDRS. Clinical trial simulations were then used to compare drug effect detection power from IRT and sum of item scores based analysis under different analysis endpoints and drug effects.
The IRT longitudinal model accurately describes the evolution of patients with and without PD medications while estimating different progression rates for the subscales. When comparing analysis methods, the IRT-based one consistently provided the highest power.
IRT is a powerful tool which enables to capture the heterogeneous nature of the MDS-UPDRS.
本研究旨在准确描述帕金森病(PD)患者的自然病程,并评估提高药物疗效检测能力的方法。
建立项目反应理论(IRT)纵向模型,描述 423 例新发 PD 患者在 48 个月期间接受治疗时的自然病程,同时考虑 MDS-UPDRS 的异质性。然后,通过临床试验模拟比较不同分析终点和药物疗效下,基于 IRT 和项目得分总和分析的药物疗效检测能力。
IRT 纵向模型准确描述了有和无 PD 药物治疗患者的演变过程,同时估计了亚量表的不同进展速度。在比较分析方法时,基于 IRT 的方法始终提供最高的效力。
IRT 是一种强大的工具,能够捕捉 MDS-UPDRS 的异质性。