Suppr超能文献

线粒体动力学的蛋白水解调节。

Proteolytic regulation of mitochondrial dynamics.

机构信息

Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America.

Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America; Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, United States of America; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.

出版信息

Mitochondrion. 2019 Nov;49:289-304. doi: 10.1016/j.mito.2019.04.008. Epub 2019 Apr 25.

Abstract

Spatiotemporal changes in the abundance, shape, and cellular localization of the mitochondrial network, also known as mitochondrial dynamics, are now widely recognized to play a key role in mitochondrial and cellular physiology as well as disease states. This process involves coordinated remodeling of the outer and inner mitochondrial membranes by conserved dynamin-like guanosine triphosphatases and their partner molecules in response to various physiological and stress stimuli. Although the core machineries that mediate fusion and partitioning of the mitochondrial network have been extensively characterized, many aspects of their function and regulation are incompletely understood and only beginning to emerge. In the present review we briefly summarize current knowledge about how the key mitochondrial dynamics-mediating factors are regulated via selective proteolysis by mitochondrial and cellular proteolytic machineries.

摘要

线粒体网络的丰度、形态和细胞定位的时空变化,也称为线粒体动力学,现在被广泛认为在线粒体和细胞生理学以及疾病状态中发挥关键作用。这个过程涉及到保守的类似于 dynamin 的鸟苷三磷酸酶及其伴侣分子通过对外膜和内膜的协调重塑,以响应各种生理和应激刺激。尽管介导线粒体网络融合和分裂的核心机械已经得到广泛的描述,但它们的许多功能和调节方面仍不完全清楚,目前才刚刚开始出现。在本综述中,我们简要总结了目前关于关键线粒体动力学调节因子如何通过线粒体和细胞蛋白水解机制的选择性蛋白水解来调节的知识。

相似文献

1
Proteolytic regulation of mitochondrial dynamics.线粒体动力学的蛋白水解调节。
Mitochondrion. 2019 Nov;49:289-304. doi: 10.1016/j.mito.2019.04.008. Epub 2019 Apr 25.
2
Mitochondrial fission and fusion.线粒体分裂与融合
Biochem Soc Trans. 2016 Dec 15;44(6):1725-1735. doi: 10.1042/BST20160129.
4
Proteolytic control of mitochondrial function and morphogenesis.线粒体功能与形态发生的蛋白水解调控
Biochim Biophys Acta. 2013 Jan;1833(1):195-204. doi: 10.1016/j.bbamcr.2012.06.025. Epub 2012 Jun 27.
5
Plant mitochondrial dynamics and the role of membrane lipids.植物线粒体动力学与膜脂的作用
Plant Signal Behav. 2015;10(10):e1050573. doi: 10.1080/15592324.2015.1050573. Epub 2015 Aug 28.
6
The cell biology of mitochondrial membrane dynamics.线粒体膜动力学的细胞生物学。
Nat Rev Mol Cell Biol. 2020 Apr;21(4):204-224. doi: 10.1038/s41580-020-0210-7. Epub 2020 Feb 18.
7
Mitochondrial dynamics: overview of molecular mechanisms.线粒体动力学:分子机制概述。
Essays Biochem. 2018 Jul 20;62(3):341-360. doi: 10.1042/EBC20170104.
8
The ever-growing complexity of the mitochondrial fission machinery.线粒体分裂机器日益复杂。
Cell Mol Life Sci. 2018 Feb;75(3):355-374. doi: 10.1007/s00018-017-2603-0. Epub 2017 Aug 5.
9
Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation.线粒体融合的机制视角:成管与分裂
Biochim Biophys Acta. 2013 Jan;1833(1):162-75. doi: 10.1016/j.bbamcr.2012.07.016. Epub 2012 Aug 5.
10
Mitochondrial Dynamics and Metabolic Regulation.线粒体动态与代谢调控。
Trends Endocrinol Metab. 2016 Feb;27(2):105-117. doi: 10.1016/j.tem.2015.12.001. Epub 2016 Jan 2.

引用本文的文献

5
OMA1-An integral membrane protease?OMA1—一种整合膜蛋白酶?
Biochim Biophys Acta Proteins Proteom. 2021 Feb;1869(2):140558. doi: 10.1016/j.bbapap.2020.140558. Epub 2020 Oct 29.

本文引用的文献

8
Regulation of ER-mitochondria contacts by Parkin via Mfn2.Parkin 通过 Mfn2 调节 ER-线粒体接触。
Pharmacol Res. 2018 Dec;138:43-56. doi: 10.1016/j.phrs.2018.09.006. Epub 2018 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验