Förster Andreas, Brandstetter Stefan, Schulze-Briese Clemens
DECTRIS Ltd , Täfernweg 1, 5405 Baden-Dättwil , Switzerland.
Philos Trans A Math Phys Eng Sci. 2019 Jun 17;377(2147):20180241. doi: 10.1098/rsta.2018.0241.
Hybrid photon counting (HPC) detectors have radically transformed basic research at synchrotron light sources since 2006. They excel at X-ray diffraction applications in the energy range from 2 to 100 keV. The main reasons for their superiority are the direct detection of individual photons and the accurate determination of scattering and diffraction intensities over an extremely high dynamic range. The detectors were first adopted in macromolecular crystallography where they revolutionized data collection. They were soon also used for small-angle scattering, coherent scattering, powder X-ray diffraction, spectroscopy and increasingly high-energy applications. Here, we will briefly survey the history of HPC detectors, explain their technology and then show in detail how improved detection has transformed a wide range of experimental techniques. We will end with an outlook to the future, which will probably see HPC technology find even broader use, for example, in electron microscopy and medical applications. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.
自2006年以来,混合光子计数(HPC)探测器彻底改变了同步辐射光源下的基础研究。它们在2至100 keV能量范围内的X射线衍射应用中表现出色。其优势的主要原因在于能够直接探测单个光子,并在极高的动态范围内准确测定散射和衍射强度。这些探测器最初应用于大分子晶体学领域,在数据收集方面引发了变革。很快,它们也被用于小角散射、相干散射、粉末X射线衍射、光谱学以及越来越多的高能应用。在此,我们将简要回顾HPC探测器的历史,解释其技术原理,然后详细展示改进后的探测方式如何改变了广泛的实验技术。我们将以对未来的展望作为结尾,未来HPC技术可能会有更广泛的应用,例如在电子显微镜和医学应用中。本文是“同步辐射科学五十年:成就与机遇”主题系列文章的一部分。