da Silva Ana Paula Bornes, Souza Débora Guerini, Souza Diogo Onofre, Machado Denise Cantarelli, Sato Douglas Kazutoshi
Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
Medical School, Institute of Geriatrics and Gerontology, Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
Front Cell Neurosci. 2019 Apr 12;13:142. doi: 10.3389/fncel.2019.00142. eCollection 2019.
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disorder mediated by immune-humoral responses directed against central nervous system (CNS) antigens. Most patients are positive for specific immunoglobulin G (IgG) auto-antibodies for aquaporin-4 (AQP4), a water channel present in astrocytes. Antigen-antibody binding promotes complement system cascade activation, immune system cell infiltration, IgG deposition, loss of AQP4 and excitatory amino acid transporter 2 (EAAT2) expression on the astrocytic plasma membrane, triggering necrotic destruction of spinal cord tissue and optic nerves. Astrocytes are very important cells in the CNS and, in addition to supporting other nerve cells, they also regulate cerebral homeostasis and control glutamatergic synapses by modulating neurotransmission in the cleft through the high-affinity glutamate transporters present in their cell membrane. Specific IgG binding to AQP4 in astrocytes blocks protein functions and reduces EAAT2 activity. Once compromised, EAAT2 cannot take up free glutamate from the extracellular space, triggering excitotoxicity in the cells, which is characterized by overactivation of glutamate receptors in postsynaptic neurons. Therefore, the longitudinally extensive myelitis and optic neuritis lesions observed in patients with NMOSD may be the result of primary astrocytic damage triggered by IgG binding to AQP4, which can activate the immune-system cascade and, in addition, downregulate EAAT2. All these processes may explain the destructive lesions in NMOSD secondary to neuroinflammation and glutamatergic excitotoxicity. New or repurposed existing drugs capable of controlling glutamatergic excitotoxicity may provide new therapeutic options to reduce tissue damage and permanent disability after NMOSD attacks.
视神经脊髓炎谱系障碍(NMOSD)是一种由针对中枢神经系统(CNS)抗原的免疫体液反应介导的炎症性疾病。大多数患者水通道蛋白4(AQP4)特异性免疫球蛋白G(IgG)自身抗体呈阳性,AQP4是一种存在于星形胶质细胞中的水通道。抗原-抗体结合促进补体系统级联激活、免疫系统细胞浸润、IgG沉积、AQP4丢失以及星形胶质细胞质膜上兴奋性氨基酸转运体2(EAAT2)表达缺失,引发脊髓组织和视神经的坏死性破坏。星形胶质细胞是中枢神经系统中非常重要的细胞,除了支持其他神经细胞外,它们还通过细胞膜上存在的高亲和力谷氨酸转运体调节突触间隙中的神经传递,从而调节脑内稳态并控制谷氨酸能突触。星形胶质细胞中与AQP4特异性结合的IgG会阻断蛋白质功能并降低EAAT2活性。一旦受损,EAAT2就无法从细胞外空间摄取游离谷氨酸,从而引发细胞内的兴奋性毒性,其特征是突触后神经元中的谷氨酸受体过度激活。因此,NMOSD患者中观察到的纵向广泛脊髓炎和视神经炎病变可能是IgG与AQP4结合引发的原发性星形胶质细胞损伤的结果,这会激活免疫系统级联反应,此外还会下调EAAT2。所有这些过程都可以解释NMOSD中继发于神经炎症和谷氨酸能兴奋性毒性的破坏性病变。能够控制谷氨酸能兴奋性毒性的新型或重新利用的现有药物可能会提供新的治疗选择,以减少NMOSD发作后的组织损伤和永久性残疾。