Afshar Nima, Safaei Soroush, Nickerson David P, Hunter Peter J, Suresh Vinod
Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
Department of Engineering Science, University of Auckland, Auckland, New Zealand.
Front Physiol. 2019 Apr 12;10:380. doi: 10.3389/fphys.2019.00380. eCollection 2019.
Absorption of glucose across the epithelial cells of the small intestine is a key process in human nutrition and initiates signaling cascades that regulate metabolic homeostasis. Validated and predictive mathematical models of glucose transport in intestinal epithelial cells are essential for interpreting experimental data, generating hypotheses, and understanding the contributions of and interactions between transport pathways. Here we report on the development of such a model that, in contrast to existing models, incorporates mechanistic descriptions of all relevant transport proteins and is implemented in the CellML framework. The model is validated against experimental and simulation data from the literature. It is then used to elucidate the relative contributions of the sodium-glucose cotransporter (SGLT1) and the glucose transporter type 2 (GLUT2) proteins in published measurements of glucose absorption from human intestinal epithelial cell lines. The model predicts that the contribution of SGLT1 dominates at low extracellular glucose concentrations (<20 mM) and short exposure times (<60 s) while the GLUT2 contribution is more significant at high glucose concentrations and long durations. Implementation in CellML permitted a modular structure in which the model was composed by reusing existing models of the individual transporters. The final structure also permits transparent changes of the model components and parameter values in order to facilitate model reuse, extension, and customization (for example, to simplify, or add complexity to specific transporter/pathway models, or reuse the model as a component of a larger framework) and carry out parameter sensitivity studies.
葡萄糖跨小肠上皮细胞的吸收是人类营养中的一个关键过程,并启动调节代谢稳态的信号级联反应。经过验证的、可预测的肠道上皮细胞葡萄糖转运数学模型对于解释实验数据、生成假设以及理解转运途径之间的作用和相互作用至关重要。在此,我们报告这样一个模型的开发情况,与现有模型不同,该模型纳入了所有相关转运蛋白的机制描述,并在CellML框架中实现。该模型根据文献中的实验和模拟数据进行了验证。然后,它被用于阐明钠 - 葡萄糖共转运蛋白(SGLT1)和2型葡萄糖转运蛋白(GLUT2)在已发表的人肠道上皮细胞系葡萄糖吸收测量中的相对贡献。该模型预测,在低细胞外葡萄糖浓度(<20 mM)和短暴露时间(<60秒)时,SGLT1的贡献占主导,而在高葡萄糖浓度和长时间时,GLUT2的贡献更为显著。在CellML中的实现允许采用模块化结构,其中该模型通过重用单个转运蛋白的现有模型来构建。最终结构还允许对模型组件和参数值进行透明更改,以促进模型的重用、扩展和定制(例如,简化或增加特定转运蛋白/途径模型的复杂性,或将该模型作为更大框架的一个组件重用),并进行参数敏感性研究。