Suppr超能文献

深度学习模型融合特征和新型分类器用于脑肿瘤分割。

Deep learning model integrating features and novel classifiers fusion for brain tumor segmentation.

机构信息

Department of Computer Science, Bahauddin Zakariya University, Multan, Pakistan.

Department of Computer Science and Engineering, University of Engineering and Technology, Lahore, Pakistan.

出版信息

Microsc Res Tech. 2019 Aug;82(8):1302-1315. doi: 10.1002/jemt.23281. Epub 2019 Apr 29.

Abstract

Automatic and precise segmentation and classification of tumor area in medical images is still a challenging task in medical research. Most of the conventional neural network based models usefully connected or convolutional neural networks to perform segmentation and classification. In this research, we present deep learning models using long short term memory (LSTM) and convolutional neural networks (ConvNet) for accurate brain tumor delineation from benchmark medical images. The two different models, that is, ConvNet and LSTM networks are trained using the same data set and combined to form an ensemble to improve the results. We used publicly available MICCAI BRATS 2015 brain cancer data set consisting of MRI images of four modalities T1, T2, T1c, and FLAIR. To enhance the quality of input images, multiple combinations of preprocessing methods such as noise removal, histogram equalization, and edge enhancement are formulated and best performer combination is applied. To cope with the class imbalance problem, class weighting is used in proposed models. The trained models are tested on validation data set taken from the same image set and results obtained from each model are reported. The individual score (accuracy) of ConvNet is found 75% whereas for LSTM based network produced 80% and ensemble fusion produced 82.29% accuracy.

摘要

在医学研究中,自动且精确地对医学图像中的肿瘤区域进行分割和分类仍然是一项具有挑战性的任务。大多数基于传统神经网络的模型都利用连接或卷积神经网络来进行分割和分类。在这项研究中,我们提出了使用长短时记忆(LSTM)和卷积神经网络(ConvNet)的深度学习模型,以便从基准医学图像中准确地描绘脑肿瘤。这两个不同的模型,即 ConvNet 和 LSTM 网络,使用相同的数据集进行训练,并组合成一个集合以提高结果。我们使用了公开的 MICCAI BRATS 2015 脑癌数据集,其中包含四种模态的 MRI 图像 T1、T2、T1c 和 FLAIR。为了提高输入图像的质量,我们制定了多种预处理方法的组合,如噪声去除、直方图均衡化和边缘增强,并应用表现最佳的组合。为了应对类别不平衡问题,我们在提出的模型中使用了类别加权。训练好的模型在取自同一图像集的验证数据集上进行测试,并报告每个模型的结果。ConvNet 的个体得分(准确率)为 75%,而基于 LSTM 的网络产生了 80%,集合融合产生了 82.29%的准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验