Suppr超能文献

M 偏倚和某些其他类型的结构选择偏倚的幅度限制。

Limits for the Magnitude of M-bias and Certain Other Types of Structural Selection Bias.

机构信息

Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA.

Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA.

出版信息

Epidemiology. 2019 Jul;30(4):501-508. doi: 10.1097/EDE.0000000000001031.

Abstract

BACKGROUND

Structural selection bias and confounding are key threats to validity of causal effect estimation. Here, we consider M-bias, a type of selection bias, described by Hernán et al as a situation wherein bias is caused by selecting on a variable that is caused by two other variables, one a cause of the exposure, the other a cause of the outcome. Our goals are to derive a bound for (the maximum) M-bias, explore through examples the magnitude of M-bias, illustrate how to apply the bound for other types of selection bias, and provide a program for directly calculating M-bias and the bound.

METHODS

We derive a bound for selection bias assuming specific, causal relationships that characterize M-bias and further evaluate it using simulations.

RESULTS

Through examples, we show that, in many plausible situations, M-bias will tend to be small. In some examples, the bias is not small-but plausibility of the examples, ultimately to be judged by the researcher, may be low. The examples also show how the M-bias bound yields bounds for other types of selection bias and also for confounding. The latter illustrates how Lee's bound for confounding can arise as a limiting case of ours.

CONCLUSIONS

We have derived a new bound for M-bias. Examples illustrate how to apply it with other types of selection bias. They also show that it can yield tighter bounds in certain situations than a previously published bound for M-bias. Our examples suggest that M-bias may often, but not uniformly, be small.

摘要

背景

结构选择偏差和混杂是因果效应估计有效性的关键威胁。在这里,我们考虑 Hernán 等人描述的一种选择偏差 M 偏差,即由于选择了由两个其他变量引起的变量而导致的偏差,一个是暴露的原因,另一个是结果的原因。我们的目标是为(最大)M 偏差导出一个界限,通过示例探索 M 偏差的幅度,说明如何将界限应用于其他类型的选择偏差,并提供一个直接计算 M 偏差和界限的程序。

方法

我们假设 M 偏差的特定因果关系来推导选择偏差的界限,并进一步使用模拟进行评估。

结果

通过示例,我们表明,在许多合理的情况下,M 偏差往往很小。在某些示例中,偏差不小——但最终由研究人员判断示例的合理性可能较低。这些示例还展示了 M 偏差界限如何为其他类型的选择偏差和混杂产生界限。后者说明了 Lee 混杂的界限如何作为我们的一个限制情况出现。

结论

我们已经为 M 偏差导出了一个新的界限。示例说明了如何将其与其他类型的选择偏差一起应用。它们还表明,在某些情况下,它可以产生比以前发表的 M 偏差界限更紧的界限。我们的示例表明,M 偏差可能经常但不总是很小。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验