From theDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.
Epidemiology. 2019 Jul;30(4):509-516. doi: 10.1097/EDE.0000000000001032.
When epidemiologic studies are conducted in a subset of the population, selection bias can threaten the validity of causal inference. This bias can occur whether or not that selected population is the target population and can occur even in the absence of exposure-outcome confounding. However, it is often difficult to quantify the extent of selection bias, and sensitivity analysis can be challenging to undertake and to understand. In this article, we demonstrate that the magnitude of the bias due to selection can be bounded by simple expressions defined by parameters characterizing the relationships between unmeasured factor(s) responsible for the bias and the measured variables. No functional form assumptions are necessary about those unmeasured factors. Using knowledge about the selection mechanism, researchers can account for the possible extent of selection bias by specifying the size of the parameters in the bounds. We also show that the bounds, which differ depending on the target population, result in summary measures that can be used to calculate the minimum magnitude of the parameters required to shift a risk ratio to the null. The summary measure can be used to determine the overall strength of selection that would be necessary to explain away a result. We then show that the bounds and summary measures can be simplified in certain contexts or with certain assumptions. Using examples with varying selection mechanisms, we also demonstrate how researchers can implement these simple sensitivity analyses. See video abstract at, http://links.lww.com/EDE/B535.
当在人群的一个子集进行流行病学研究时,选择偏差可能会威胁因果推断的有效性。无论所选人群是否为目标人群,这种偏差都可能发生,即使在没有暴露-结局混杂的情况下也是如此。然而,通常很难量化选择偏差的程度,并且进行敏感性分析和理解也具有挑战性。在本文中,我们证明,由于选择而产生的偏差的幅度可以通过简单的表达式来限制,这些表达式由导致偏差的未测量因素与测量变量之间的关系特征的参数定义。对于这些未测量的因素,不需要关于它们的函数形式的假设。研究人员可以利用对选择机制的了解,通过指定边界参数的大小来解释选择偏差的可能程度。我们还表明,边界值因目标人群而异,从而产生了总结性指标,可以用来计算将风险比转移到零所需的参数的最小幅度。该总结指标可用于确定消除结果所需的整体选择强度。然后,我们表明在某些情况下或在某些假设下,边界值和总结指标可以简化。我们还使用具有不同选择机制的示例,演示了研究人员如何实施这些简单的敏感性分析。有关详细信息,请访问,http://links.lww.com/EDE/B535。