Suppr超能文献

基于主成分图像分析的神经网络算法在大学英语听力波段扩展中的应用。

Application of Neural Network Algorithm Based on Principal Component Image Analysis in Band Expansion of College English Listening.

机构信息

School of Foreign Languages, Ningxia Normal University, Guyuan, Ningxia 756000, China.

出版信息

Comput Intell Neurosci. 2021 Nov 12;2021:9732156. doi: 10.1155/2021/9732156. eCollection 2021.

Abstract

With the development of information technology, band expansion technology is gradually applied to college English listening teaching. This technology aims to recover broadband speech signals from narrowband speech signals with a limited frequency band. However, due to the limitations of current voice equipment and channel conditions, the existing voice band expansion technology often ignores the high-frequency and low-frequency correlation of the audio, resulting in excessive smoothing of the recovered high-frequency spectrum, too dull subjective hearing, and insufficient expression ability. In order to solve this problem, a neural network model PCA-NN (principal components analysis-neural network) based on principal component image analysis is proposed. Based on the nonlinear characteristics of the audio image signal, the model reduces the dimension of high-dimensional data and realizes the effective recovery of the high-frequency detailed spectrum of audio signal in phase space. The results show that the PCA-NN, i.e., neural network based on principal component analysis, is superior to other audio expansion algorithms in subjective and objective evaluation; in log spectrum distortion evaluation, PCA-NN algorithm obtains smaller LSD. Compared with EHBE, Le, and La, the average LSD decreased by 2.286 dB, 0.51 dB, and 0.15 dB, respectively. The above results show that in the image frequency band expansion of college English listening, the neural network algorithm based on principal component analysis (PCA-NN) can obtain better high-frequency reconstruction accuracy and effectively improve the audio quality.

摘要

随着信息技术的发展,频带展宽技术逐渐应用于大学英语听力教学中。该技术旨在从有限带宽的窄带语音信号中恢复宽带语音信号。然而,由于当前语音设备和信道条件的限制,现有的语音频带展宽技术往往忽略了音频的高低频相关性,导致恢复的高频谱过度平滑,主观听感过于沉闷,表现力不足。为了解决这个问题,提出了一种基于主成分图像分析的神经网络模型 PCA-NN(主成分分析-神经网络)。该模型基于音频图像信号的非线性特征,降低了高维数据的维度,实现在相位空间中对音频信号高频详细频谱的有效恢复。结果表明,基于主成分分析的神经网络(PCA-NN)在主观和客观评价方面优于其他音频扩展算法;在对数谱失真评价中,PCA-NN 算法获得了更小的 LSD。与 EHBE、Le 和 La 相比,平均 LSD 分别降低了 2.286 dB、0.51 dB 和 0.15 dB。上述结果表明,在大学英语听力的图像频带扩展中,基于主成分分析的神经网络算法(PCA-NN)可以获得更好的高频重建精度,有效提高音频质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/398e/8604590/41326a46b898/CIN2021-9732156.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验