Suppr超能文献

基于深度残差网络的皮肤镜图像中黑色素瘤的自动识别。

Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks.

出版信息

IEEE Trans Med Imaging. 2017 Apr;36(4):994-1004. doi: 10.1109/TMI.2016.2642839. Epub 2016 Dec 21.

Abstract

Automated melanoma recognition in dermoscopy images is a very challenging task due to the low contrast of skin lesions, the huge intraclass variation of melanomas, the high degree of visual similarity between melanoma and non-melanoma lesions, and the existence of many artifacts in the image. In order to meet these challenges, we propose a novel method for melanoma recognition by leveraging very deep convolutional neural networks (CNNs). Compared with existing methods employing either low-level hand-crafted features or CNNs with shallower architectures, our substantially deeper networks (more than 50 layers) can acquire richer and more discriminative features for more accurate recognition. To take full advantage of very deep networks, we propose a set of schemes to ensure effective training and learning under limited training data. First, we apply the residual learning to cope with the degradation and overfitting problems when a network goes deeper. This technique can ensure that our networks benefit from the performance gains achieved by increasing network depth. Then, we construct a fully convolutional residual network (FCRN) for accurate skin lesion segmentation, and further enhance its capability by incorporating a multi-scale contextual information integration scheme. Finally, we seamlessly integrate the proposed FCRN (for segmentation) and other very deep residual networks (for classification) to form a two-stage framework. This framework enables the classification network to extract more representative and specific features based on segmented results instead of the whole dermoscopy images, further alleviating the insufficiency of training data. The proposed framework is extensively evaluated on ISBI 2016 Skin Lesion Analysis Towards Melanoma Detection Challenge dataset. Experimental results demonstrate the significant performance gains of the proposed framework, ranking the first in classification and the second in segmentation among 25 teams and 28 teams, respectively. This study corroborates that very deep CNNs with effective training mechanisms can be employed to solve complicated medical image analysis tasks, even with limited training data.

摘要

自动进行皮肤镜图像中的黑色素瘤识别是一项极具挑战性的任务,这主要是因为皮肤病变的对比度低、黑色素瘤的类内变化巨大、黑色素瘤和非黑色素瘤病变之间的视觉相似度高以及图像中存在许多伪影。为了应对这些挑战,我们提出了一种利用深度卷积神经网络(CNN)进行黑色素瘤识别的新方法。与现有的使用低级手工制作特征或浅层架构的 CNN 方法相比,我们的深度网络(超过 50 层)可以获取更丰富和更具判别力的特征,从而实现更准确的识别。为了充分利用深度网络,我们提出了一系列方案,以确保在有限的训练数据下进行有效的训练和学习。首先,我们应用残差学习来应对网络加深时的退化和过拟合问题。该技术可以确保我们的网络从增加网络深度所带来的性能提升中受益。然后,我们构建了一个全卷积残差网络(FCRN)用于精确的皮肤病变分割,并通过结合多尺度上下文信息集成方案进一步增强其能力。最后,我们无缝集成了所提出的 FCRN(用于分割)和其他深度残差网络(用于分类),形成了一个两阶段框架。该框架使分类网络能够根据分割结果提取更具代表性和特异性的特征,而不是基于整个皮肤镜图像,从而进一步缓解了训练数据不足的问题。该框架在 ISBI 2016 皮肤病变分析以黑色素瘤检测挑战赛数据集上进行了广泛评估。实验结果表明,所提出的框架具有显著的性能提升,在分类方面排名第一,在分割方面排名第二,分别在 25 个团队和 28 个团队中。这项研究证实,即使训练数据有限,也可以使用具有有效训练机制的深度 CNN 来解决复杂的医学图像分析任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验