Suppr超能文献

Evolution of proteins in mammalian cytoplasmic and mitochondrial ribosomes.

作者信息

Pietromonaco S F, Hessler R A, O'Brien T W

出版信息

J Mol Evol. 1986;24(1-2):110-7. doi: 10.1007/BF02099958.

Abstract

The proteins of cytoplasmic and mitochondrial ribosomes from the cow and the rat were analyzed by co-electrophoresis in two dimensional polyacrylamide gels to determine their relative evolutionary rates. In a pairwise comparison of individual ribosomal proteins (r-proteins) from the cow and the rat, over 85% of the cytoplasmic r-proteins have conserved electrophoretic properties in this system, while only 15% of the proteins of mitochondrial ribosomes from these animals fell into this category. These values predict that mammalian mitochondrial r-proteins are evolving about 13 times more rapidly than cytoplasmic r-proteins. Based on actual evolutionary rates for representative cytoplasmic r-proteins, this mitochondrial r-protein evolutionary rate corresponds to an amino acid substitution rate of 40 X 10(-10) per site per year, placing mitochondrial r-proteins in the category of rapidly evolving proteins. The mitochondrial r-proteins are apparently evolving at a rate comparable to that of the mitochondrial rRNA, suggesting that functional constraints act more or less equally on both kinds of molecules in the ribosome. It is significant that mammalian mitochondrial r-proteins are evolving more rapidly than cytoplasmic r-proteins in the same cell, since both sets of r-proteins are encoded by nuclear genes. Such a difference in evolutionary rates implies that the functional constraints operating on ribosomes are somewhat relaxed for mitochondrial ribosomes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验