Cho Soo-Yeon, Jang Doohyung, Kang Hohyung, Koh Hyeong-Jun, Choi Junghoon, Jung Hee-Tae
Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea.
KAIST Institute for NanoCentury , Yuseong-gu, Daejeon 34141 , Republic of Korea.
Anal Chem. 2019 May 21;91(10):6850-6858. doi: 10.1021/acs.analchem.9b01089. Epub 2019 May 10.
The fabrication of p-n heterostructures of a metal oxide semiconductor (MOS) showed that a large amount of heterojunction interfaces is one of the key issues in MOS gas sensor research, since it could significantly enhance the sensing performance. Despite considerable progress in this area, fabrication of an ideal p-n heterojunction sensing channel has been challenging because of morphological limitations of synthetic methods in the conventional bottom-up fabrication based on precursor reductions. In this study, a 10 nm scale p-n heterojunction nanochannel was fabricated with ultrasmall grained WO/CuO nanopatterns in a large area (centimeter scale) through unique one-step top-down lithographic approaches. The fabricated p-n heterostructure nanochannel showed ultrathinness (20 nm thickness) and high aspect ratio (>10) and consisted of highly dispersed p-type dopants and n-type channel materials. This facile heterojunction nanostructure could induce a high degree of extended depletion layer and efficient catalytic properties within its single-nanochannel surfaces. Accordingly, the WO/CuO nanochannel exhibited ultrasensitive detection performance toward ethanol (CHOH) ( R/ R = 224 at100 ppb), 12 times higher than that of a pristine WO nanochannel. The limit of detection of the sensors was calculated to be below parts per billion levels (0.094 ppb) with significant response amplitudes ( R/ R = 75), which is the best ethanol-sensing performance among previously reported MOS-based sensors. Our unique lithographic approach for the p-n heterojunction nanochannel is expected to be universally applicable to various heteronanostructures such as the n-n junction, p-p junction, and metal-semiconductor junction without combinatorial limitations.
金属氧化物半导体(MOS)的p-n异质结构的制备表明,大量的异质结界面是MOS气体传感器研究中的关键问题之一,因为它可以显著提高传感性能。尽管该领域取得了相当大的进展,但由于基于前驱体还原的传统自下而上制备方法的形态学限制,制备理想的p-n异质结传感通道一直具有挑战性。在本研究中,通过独特的一步自上而下光刻方法,在大面积(厘米级)上制备了具有超小晶粒WO/CuO纳米图案的10纳米级p-n异质结纳米通道。制备的p-n异质结构纳米通道具有超薄性(20纳米厚度)和高纵横比(>10),由高度分散的p型掺杂剂和n型通道材料组成。这种简便的异质结纳米结构可以在其单纳米通道表面诱导高度扩展的耗尽层和高效的催化性能。因此,WO/CuO纳米通道对乙醇(CHOH)表现出超灵敏的检测性能(在100 ppb时R/R = 224),比原始WO纳米通道高12倍。传感器的检测限计算为低于十亿分之一水平(0.094 ppb),具有显著的响应幅度(R/R = 75),这是先前报道的基于MOS的传感器中最佳的乙醇传感性能。我们独特的p-n异质结纳米通道光刻方法有望普遍适用于各种异质纳米结构,如n-n结、p-p结和金属-半导体结,而不受组合限制。