Suppr超能文献

用于解决监督分类问题的进化尖峰神经网络。

Evolutionary Spiking Neural Networks for Solving Supervised Classification Problems.

机构信息

Postgraduate Studies and Research Division, National Technology of Mexico, León Institute of Technology, León, Guanajuato, Mexico.

Department of Organizational Studies, DCEA-University of Guanajuato, Guanajuato, Guanajuato, Mexico.

出版信息

Comput Intell Neurosci. 2019 Mar 28;2019:4182639. doi: 10.1155/2019/4182639. eCollection 2019.

Abstract

This paper presents a grammatical evolution (GE)-based methodology to automatically design third generation artificial neural networks (ANNs), also known as spiking neural networks (SNNs), for solving supervised classification problems. The proposal performs the SNN design by exploring the search space of three-layered feedforward topologies with configured synaptic connections (weights and delays) so that no explicit training is carried out. Besides, the designed SNNs have partial connections between input and hidden layers which may contribute to avoid redundancies and reduce the dimensionality of input feature vectors. The proposal was tested on several well-known benchmark datasets from the UCI repository and statistically compared against a similar design methodology for second generation ANNs and an adapted version of that methodology for SNNs; also, the results of the two methodologies and the proposed one were improved by changing the fitness function in the design process. The proposed methodology shows competitive and consistent results, and the statistical tests support the conclusion that the designs produced by the proposal perform better than those produced by other methodologies.

摘要

本文提出了一种基于语法进化 (GE) 的方法,用于自动设计第三代人工神经网络 (ANNs),也称为尖峰神经网络 (SNNs),以解决监督分类问题。该提案通过探索具有配置的突触连接(权重和延迟)的三层前馈拓扑的搜索空间来执行 SNN 设计,因此不需要进行显式训练。此外,设计的 SNN 具有输入层和隐藏层之间的部分连接,这有助于避免冗余并降低输入特征向量的维数。该提案在 UCI 存储库中的几个著名基准数据集上进行了测试,并与第二代 ANN 的类似设计方法和该方法的适应版本进行了统计比较;此外,通过在设计过程中更改适应度函数,改进了这两种方法和所提出方法的结果。所提出的方法显示出有竞争力和一致的结果,并且统计测试支持这样的结论,即该提案产生的设计比其他方法产生的设计表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f4/6458934/284375e1419f/CIN2019-4182639.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验