Suppr超能文献

基于低光双通道相机的高动态范围成像的加权稀疏表示多尺度变换融合算法

Weighted sparse representation multi-scale transform fusion algorithm for high dynamic range imaging with a low-light dual-channel camera.

作者信息

Chen Guo, Li Li, Jin Weiqi, Zhu Jin, Shi Feng

出版信息

Opt Express. 2019 Apr 15;27(8):10564-10579. doi: 10.1364/OE.27.010564.

Abstract

Most imaging devices lose image information during the acquisition process due to their low dynamic range (LDR). Existing high dynamic range (HDR) imaging techniques have a trade-off with time or spatial resolution, resulting in potential motion blur or image misalignment. Current HDR methods are based on the fusion of multi-frame LDR images and can suffer from blurring of fine details, image aliasing, and image boundary effects. This study developed a dual-channel camera (DCC) to achieve HDR imaging, which can eliminate image motion blur and registration problems. Considering the output characteristics of the camera, we propose a weighted sparse representation multi-scale transform fusion algorithm, which fully preserves the original image information, while eliminating image aliasing and boundary problems in the fused image, resulting in high-quality HDR imaging.

摘要

大多数成像设备由于其低动态范围(LDR),在采集过程中会丢失图像信息。现有的高动态范围(HDR)成像技术在时间或空间分辨率上存在权衡,会导致潜在的运动模糊或图像配准问题。当前的HDR方法基于多帧LDR图像的融合,可能会出现精细细节模糊、图像混叠和图像边界效应。本研究开发了一种双通道相机(DCC)来实现HDR成像,它可以消除图像运动模糊和配准问题。考虑到相机的输出特性,我们提出了一种加权稀疏表示多尺度变换融合算法,该算法在充分保留原始图像信息的同时,消除了融合图像中的图像混叠和边界问题,从而实现高质量的HDR成像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验