Suppr超能文献

金字塔式交互注意高动态范围成像。

Pyramid Inter-Attention for High Dynamic Range Imaging.

机构信息

Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea.

Samsung Electronics, Suwon 16677, Korea.

出版信息

Sensors (Basel). 2020 Sep 7;20(18):5102. doi: 10.3390/s20185102.

Abstract

This paper proposes a novel approach to high-dynamic-range (HDR) imaging of dynamic scenes to eliminate ghosting artifacts in HDR images when in the presence of severe misalignment (large object or camera motion) in input low-dynamic-range (LDR) images. Recent non-flow-based methods suffer from ghosting artifacts in the presence of large object motion. Flow-based methods face the same issue since their optical flow algorithms yield huge alignment errors. To eliminate ghosting artifacts, we propose a simple yet effective alignment network for solving the misalignment. The proposed pyramid inter-attention module (PIAM) performs alignment of LDR features by leveraging inter-attention maps. Additionally, to boost the representation of aligned features in the merging process, we propose a dual excitation block (DEB) that recalibrates each feature both spatially and channel-wise. Exhaustive experimental results demonstrate the effectiveness of the proposed PIAM and DEB, achieving state-of-the-art performance in terms of producing ghost-free HDR images.

摘要

本文提出了一种新的方法,用于对动态场景进行高动态范围(HDR)成像,以消除在输入低动态范围(LDR)图像中存在严重失准(大物体或相机运动)时 HDR 图像中的重影伪影。最近的非流方法在存在大物体运动时会出现重影伪影。基于流的方法也存在同样的问题,因为它们的光流算法会产生很大的对准误差。为了消除重影伪影,我们提出了一种简单而有效的对齐网络来解决失准问题。所提出的金字塔互注意力模块(PIAM)通过利用互注意力图来实现 LDR 特征的对齐。此外,为了在合并过程中增强对齐特征的表示,我们提出了一种双重激励块(DEB),它在空间和通道两个维度上重新校准每个特征。详尽的实验结果表明,所提出的 PIAM 和 DEB 是有效的,在生成无重影的 HDR 图像方面达到了最先进的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c80/7570613/6cdd942ab546/sensors-20-05102-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验