Kildegaard Kanchana Rueksomtawin, Adiego-Pérez Belén, Doménech Belda David, Khangura Jaspreet Kaur, Holkenbrink Carina, Borodina Irina
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark.
Synth Syst Biotechnol. 2017 Oct 20;2(4):287-294. doi: 10.1016/j.synbio.2017.10.002. eCollection 2017 Dec.
Astaxanthin is a red-colored carotenoid, used as food and feed additive. Astaxanthin is mainly produced by chemical synthesis, however, the process is expensive and synthetic astaxanthin is not approved for human consumption. In this study, we engineered the oleaginous yeast for production of astaxanthin by fermentation. First, we screened 12 different isolates for β-carotene production by introducing two genes for β-carotene biosynthesis: bi-functional phytoene synthase/lycopene cyclase () and phytoene desaturase () from the red yeast . The best strain produced 31.1 ± 0.5 mg/L β-carotene. Next, we optimized the activities of 3-hydroxy-3-methylglutaryl-coenzyme A reductase () and geranylgeranyl diphosphate synthase () in the best producing strain and obtained 453.9 ± 20.2 mg/L β-carotene. Additional downregulation of the competing squalene synthase increased the β-carotene titer to 797.1 ± 57.2 mg/L. Then we introduced β-carotene ketolase () from sp. N81106 and hydroxylase () from to convert β-carotene into astaxanthin. The constructed strain accumulated 10.4 ± 0.5 mg/L of astaxanthin but also accumulated astaxanthin biosynthesis intermediates, 5.7 ± 0.5 mg/L canthaxanthin, and 35.3 ± 1.8 mg/L echinenone. Finally, we optimized the copy numbers of and to obtain 3.5 mg/g DCW (54.6 mg/L) of astaxanthin in a microtiter plate cultivation. Our study for the first time reports engineering of for the production of astaxanthin. The high astaxanthin content and titer obtained even in a small-scale cultivation demonstrates a strong potential for -based fermentation process for astaxanthin production.
虾青素是一种红色类胡萝卜素,用作食品和饲料添加剂。虾青素主要通过化学合成生产,然而,该过程成本高昂,且合成虾青素未被批准用于人类消费。在本研究中,我们对产油酵母进行基因工程改造,以通过发酵生产虾青素。首先,我们通过导入来自红酵母的β-胡萝卜素生物合成的两个基因:双功能八氢番茄红素合酶/番茄红素环化酶()和八氢番茄红素去饱和酶(),筛选了12种不同的菌株用于β-胡萝卜素生产。最佳菌株产生了31.1±0.5mg/L的β-胡萝卜素。接下来,我们在最佳生产菌株中优化了3-羟基-3-甲基戊二酰辅酶A还原酶()和香叶基香叶基二磷酸合酶()的活性,获得了453.9±20.2mg/L的β-胡萝卜素。额外下调竞争性的角鲨烯合酶将β-胡萝卜素产量提高到797.1±57.2mg/L。然后,我们引入了来自海栖热袍菌N81106的β-胡萝卜素酮醇酶()和来自欧文氏菌的羟化酶(),将β-胡萝卜素转化为虾青素。构建的菌株积累了10.4±0.5mg/L的虾青素,但也积累了虾青素生物合成中间体,5.7±0.5mg/L的角黄素和35.3±1.8mg/L的海胆酮。最后,我们优化了和的拷贝数,在微孔板培养中获得了3.5mg/g干细胞重量(54.6mg/L)的虾青素。我们的研究首次报道了对产油酵母进行基因工程改造以生产虾青素。即使在小规模培养中获得的高虾青素含量和产量也表明基于产油酵母的虾青素发酵生产过程具有强大的潜力。