Suppr超能文献

通过工程大肠杆菌和有机溶剂的原位产物回收(ISPR)提高苯乙烯产量。

Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent.

机构信息

Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

Microb Cell Fact. 2019 May 3;18(1):79. doi: 10.1186/s12934-019-1129-6.

Abstract

BACKGROUND

Styrene is a large-volume commodity petrochemical, which has been used in a wide range of polymer industry as the main building block for the construction of various functional polymers. Despite many efforts to produce styrene in microbial hosts, the production titers are still low and are not enough to meet the commercial production of styrene.

RESULTS

Previously, we developed a high L-phenylalanine producer (E. coli YHP05), and it was used as a main host for de novo synthesis of styrene. First, we introduced the co-expression system of phenylalanine-ammonia lyase (PAL) and ferulic acid decarboxylase (FDC) genes for the synthesis of styrene from L-phenylalanine. Then, to minimize cell toxicity and enhance the recovery of styrene, in situ product recovery (ISPR) with n-dodecane was employed, and culture medium with supplementation of complex sources was also optimized. As a result, 1.7 ± 0.1 g/L of styrene was produced in the flask cultures. Finally, fed-batch cultivations were performed in lab-scale bioreactor, and to minimize the loss of volatile styrene during the cultivation, three consecutive bottles containing n-dodecane were connected to the air outlet of bioreactor for gas-stripping. To conclude, the total titer of styrene was as high as 5.3 ± 0.2 g/L, which could be obtained at 60 h.

CONCLUSION

We successfully engineered E. coli strain for the de novo production of styrene in both flask and fed-batch cultivation, and could achieve the highest titer for styrene in bacterial hosts reported till date. We believe that our efforts in strain engineering and ISPR strategy with organic solvent will provide a new insight for economic and industrial production of styrene in a biological platform.

摘要

背景

苯乙烯是一种大宗商品石化产品,已广泛应用于聚合物工业,作为构建各种功能聚合物的主要结构单元。尽管人们已经做出了许多努力,试图在微生物宿主中生产苯乙烯,但产量仍然很低,无法满足苯乙烯的商业生产需求。

结果

之前,我们开发了一株高产 L-苯丙氨酸的工程菌(E. coli YHP05),并将其用作从头合成苯乙烯的主要宿主。首先,我们引入苯丙氨酸-氨裂解酶(PAL)和阿魏酸脱羧酶(FDC)基因的共表达系统,以 L-苯丙氨酸为原料合成苯乙烯。然后,为了最小化细胞毒性并提高苯乙烯的回收率,采用了正十二烷原位产物回收(ISPR)技术,并对补充复杂来源的培养基进行了优化。结果,在摇瓶培养中生产了 1.7±0.1 g/L 的苯乙烯。最后,在实验室规模的生物反应器中进行了分批补料培养,为了最小化培养过程中挥发性苯乙烯的损失,将三个含有正十二烷的连续瓶子连接到生物反应器的出气口进行气提。总之,苯乙烯的总产量高达 5.3±0.2 g/L,可在 60 h 内获得。

结论

我们成功地对 E. coli 菌株进行了工程改造,以在摇瓶和分批补料培养中从头生产苯乙烯,并在细菌宿主中实现了迄今为止报道的最高苯乙烯产量。我们相信,我们在菌株工程和有机溶剂原位产物回收策略方面的努力,将为在生物平台上经济、工业化生产苯乙烯提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f7/6498506/58c33bb1ed36/12934_2019_1129_Fig1_HTML.jpg

相似文献

2
Styrene biosynthesis from glucose by engineered E. coli.
Metab Eng. 2011 Sep;13(5):544-54. doi: 10.1016/j.ymben.2011.06.005. Epub 2011 Jun 23.
3
A systematic optimization of styrene biosynthesis in BL21(DE3).
Biotechnol Biofuels. 2018 Jan 25;11:14. doi: 10.1186/s13068-018-1017-z. eCollection 2018.
4
Systematic metabolic engineering of Escherichia coli for the enhanced production of cinnamaldehyde.
Metab Eng. 2023 Mar;76:63-74. doi: 10.1016/j.ymben.2023.01.006. Epub 2023 Jan 10.
5
De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
Appl Microbiol Biotechnol. 2020 Jun;104(11):4849-4861. doi: 10.1007/s00253-020-10576-1. Epub 2020 Apr 13.
6
Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation.
Appl Microbiol Biotechnol. 2019 Jul;103(14):5627-5639. doi: 10.1007/s00253-019-09876-y. Epub 2019 May 18.
7
Genome engineering of E. coli for improved styrene production.
Metab Eng. 2020 Jan;57:74-84. doi: 10.1016/j.ymben.2019.09.007. Epub 2019 Sep 13.
8
Comparing in situ removal strategies for improving styrene bioproduction.
Bioprocess Biosyst Eng. 2015 Jan;38(1):165-74. doi: 10.1007/s00449-014-1255-9. Epub 2014 Jul 13.
9
Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals.
Metab Eng. 2022 Jul;72:133-149. doi: 10.1016/j.ymben.2022.03.004. Epub 2022 Mar 11.
10
Styrene Production in Genetically Engineered in a Two-Phase Culture.
BioTech (Basel). 2024 Jan 14;13(1):2. doi: 10.3390/biotech13010002.

引用本文的文献

1
Characterization of a consensus-designed -cinnamic acid decarboxylase for styrene biosynthesis.
mBio. 2025 Jun 11;16(6):e0071425. doi: 10.1128/mbio.00714-25. Epub 2025 May 23.
2
High-efficiency water use and process performance for bioproduction of trans-cinnamic acid.
Sci Rep. 2025 Apr 4;15(1):11592. doi: 10.1038/s41598-025-96042-2.
3
Production of aromatic amino acids and their derivatives by Escherichia coli and Corynebacterium glutamicum.
World J Microbiol Biotechnol. 2025 Feb 7;41(2):65. doi: 10.1007/s11274-025-04264-3.
4
Microbial engineering for monocyclic aromatic compounds production.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf003.
5
Engineering for life in toxicity: Key to industrializing microbial synthesis of high energy density fuels.
Eng Microbiol. 2022 Mar 17;2(2):100013. doi: 10.1016/j.engmic.2022.100013. eCollection 2022 Jun.
6
Inhibition Control by Continuous Extractive Fermentation Enhances De Novo 2-Phenylethanol Production by Yeast.
Biotechnol Bioeng. 2025 Feb;122(2):287-297. doi: 10.1002/bit.28872. Epub 2024 Oct 25.
7
Engineering styrene biosynthesis: designing a functional trans-cinnamic acid decarboxylase in Pseudomonas.
Microb Cell Fact. 2024 Feb 28;23(1):69. doi: 10.1186/s12934-024-02341-0.
8
Styrene Production in Genetically Engineered in a Two-Phase Culture.
BioTech (Basel). 2024 Jan 14;13(1):2. doi: 10.3390/biotech13010002.
9
Complete integration of carbene-transfer chemistry into biosynthesis.
Nature. 2023 May;617(7960):403-408. doi: 10.1038/s41586-023-06027-2. Epub 2023 May 3.
10
Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers.
Chem Rev. 2023 Mar 8;123(5):2609-2734. doi: 10.1021/acs.chemrev.2c00354. Epub 2022 Oct 13.

本文引用的文献

1
A systematic optimization of styrene biosynthesis in BL21(DE3).
Biotechnol Biofuels. 2018 Jan 25;11:14. doi: 10.1186/s13068-018-1017-z. eCollection 2018.
2
Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity.
J Ind Microbiol Biotechnol. 2016 May;43(5):595-604. doi: 10.1007/s10295-016-1734-x. Epub 2016 Jan 23.
3
Metabolic engineering of Escherichia coli for the production of cinnamaldehyde.
Microb Cell Fact. 2016 Jan 19;15:16. doi: 10.1186/s12934-016-0415-9.
4
Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae.
Microb Cell Fact. 2014 Aug 21;13:123. doi: 10.1186/s12934-014-0123-2.
5
Comparing in situ removal strategies for improving styrene bioproduction.
Bioprocess Biosyst Eng. 2015 Jan;38(1):165-74. doi: 10.1007/s00449-014-1255-9. Epub 2014 Jul 13.
6
Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli.
J Ind Microbiol Biotechnol. 2014 Aug;41(8):1211-6. doi: 10.1007/s10295-014-1469-5. Epub 2014 Jun 18.
7
Engineering microbial chemical factories to produce renewable "biomonomers".
Front Microbiol. 2012 Aug 30;3:313. doi: 10.3389/fmicb.2012.00313. eCollection 2012.
8
Styrene biosynthesis from glucose by engineered E. coli.
Metab Eng. 2011 Sep;13(5):544-54. doi: 10.1016/j.ymben.2011.06.005. Epub 2011 Jun 23.
9
Fundamental relationship between operon organization and gene expression.
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10626-31. doi: 10.1073/pnas.1105692108. Epub 2011 Jun 13.
10
High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal.
Appl Microbiol Biotechnol. 2011 Jun;90(5):1681-90. doi: 10.1007/s00253-011-3173-y. Epub 2011 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验