Suppr超能文献

3D 体视摄影测量与传统颅面人类学测量:比较 3D 面部标准数据库与 Farkas 的北美标准的测量值。

3D stereophotogrammetry versus traditional craniofacial anthropometry: Comparing measurements from the 3D facial norms database to Farkas's North American norms.

机构信息

Center for Craniofacial and Dental Genetics, Department of Oral Biology, Department of Human Genetics, and Department of Anthropology, University of Pittsburgh, Pittsburgh, Pa.

出版信息

Am J Orthod Dentofacial Orthop. 2019 May;155(5):693-701. doi: 10.1016/j.ajodo.2018.06.018.

Abstract

INTRODUCTION

Datasets of soft-tissue craniofacial anthropometric norms collected with the use of different methods are available, but there is little understanding of how the measurements compare. Here we compare a set of standard facial measurements between 2 large datasets: the 3D Facial Norms (3DFN) dataset collected with the use of 3D stereophotogrammetry (n = 2454), and the Farkas craniofacial norms collected with the use of direct anthropometry (n = 2326).

METHODS

A common set of 24 craniofacial linear distances were compared by computing standardized effect sizes (Cohen d) for each measurement to describe the overall direction and magnitude of the difference between the 2 datasets.

RESULTS

Variables with higher mean d values (suggesting greater discrepancy across datasets) included measurements involving the ear landmark tragion, the landmark nasion, the width of nasolabial structures, the vermilion portion of the lips, and palpebral fissure length. Variables with lower mean d values included smaller midline measurements involving the lips and lower face and horizontal distance measures between the eyes. Eight measurements showed a significant negative correlation (P < 0.05) between Cohen d and age, indicating greater similarity across the 2 datasets as age increased.

CONCLUSIONS

There are considerable differences between the 3DFN and Farkas norms. In addition to the measurement methods, other factors accounting for discrepancies may include secular trends in craniofacial morphology or differences in ethnic composition.

摘要

简介

目前已有使用不同方法收集的软组织颅面人体测量学标准数据集,但人们对这些测量值如何比较知之甚少。在这里,我们比较了两个大型数据集之间的一组标准面部测量值:使用 3D 体视摄影术(n=2454)收集的 3DFN 数据集和使用直接人体测量法(n=2326)收集的 Farkas 颅面标准数据集。

方法

通过计算每个测量值的标准化效应大小(Cohen d)来比较 24 个颅面线性距离的通用数据集,以描述两个数据集之间的整体方向和差异幅度。

结果

具有较高平均 d 值(表明数据集之间差异较大)的变量包括涉及耳标志 tragion、标志点 nasion、鼻唇结构宽度、唇红部分和睑裂长度的测量值。具有较低平均 d 值的变量包括涉及嘴唇和下面部的较小中线测量值以及眼睛之间的水平距离测量值。有 8 个测量值显示 Cohen d 与年龄之间存在显著负相关(P<0.05),表明随着年龄的增长,两个数据集之间的相似性更大。

结论

3DFN 和 Farkas 标准之间存在相当大的差异。除了测量方法外,导致差异的其他因素可能包括颅面形态的长期趋势或种族构成的差异。

相似文献

9

引用本文的文献

3

本文引用的文献

1
Body size and allometric variation in facial shape in children.儿童的体型与面部形状的异速生长变化
Am J Phys Anthropol. 2018 Feb;165(2):327-342. doi: 10.1002/ajpa.23356. Epub 2017 Nov 27.
9
Improved detection of landmarks on 3D human face data.改进对三维人脸数据上标志点的检测。
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6482-5. doi: 10.1109/EMBC.2013.6611039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验