Suppr超能文献

研究细菌生物表面活性剂在金属纳米粒子合成中的应用前景——综述。

Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis - a comprehensive review.

机构信息

Department of Chemical Engineering, SSN College of Engineering, Chennai 603110, India.

SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), SSN College of Engineering, Chennai 603110, India.

出版信息

IET Nanobiotechnol. 2019 May;13(3):243-249. doi: 10.1049/iet-nbt.2018.5184.

Abstract

Establishing biological synthesis of nanoparticles is increasing nowadays in the field of nanotechnology. The search for an optimal source with durability, stability, capacity to withstand higher environmental conditions with excellent characteristics is yet to meet. Consequently, there is need to create an eco-friendly strategy for metal nanoparticle synthesis. One approach investigated in this review is the use of biosurfactants to enhance the synthesis biologically. In comparison with the other technologies, biosurfactants are less toxic and exhibit higher properties. This method is different from the conventional practice like physical and chemical methods. Several research studies represented that the biosurfactant influences the production of nanoparticles about 2-50 nm. In this manner, the research towards the biosurfactant has raised. This review also addressed the feasibility of biosurfactant and their benefits in the synthesis of metallic nanoparticles. The findings from this review can recommend a conceivable use of biosurfactant as a source for metal nanoparticle synthesis.

摘要

纳米技术领域日益关注纳米颗粒的生物合成。目前仍在寻找耐久性强、稳定性好、能够承受更高环境条件、具有优异特性的最佳来源。因此,需要为金属纳米颗粒的合成创造一种环保策略。本综述探讨的一种方法是利用生物表面活性剂来增强生物合成。与其他技术相比,生物表面活性剂的毒性更小,性能更高。这种方法与物理和化学方法等传统方法不同。多项研究表明,生物表面活性剂会影响约 2-50nm 的纳米颗粒的生成。因此,人们对生物表面活性剂的研究有所增加。本综述还探讨了生物表面活性剂在金属纳米颗粒合成中的可行性和益处。本综述的结果可以推荐将生物表面活性剂作为金属纳米颗粒合成的来源。

相似文献

1
2
Biosurfactant mediated biosynthesis of selected metallic nanoparticles.
Int J Mol Sci. 2014 Aug 8;15(8):13720-37. doi: 10.3390/ijms150813720.
3
Biosurfactants as green stabilizers for the biological synthesis of nanoparticles.
Crit Rev Biotechnol. 2011 Dec;31(4):354-64. doi: 10.3109/07388551.2010.539971. Epub 2011 Jan 22.
4
Advances in stabilization of metallic nanoparticle with biosurfactants- a review on current trends.
Heliyon. 2024 Apr 19;10(9):e29773. doi: 10.1016/j.heliyon.2024.e29773. eCollection 2024 May 15.
5
Environmental applications of biosurfactants: recent advances.
Int J Mol Sci. 2011 Jan 18;12(1):633-54. doi: 10.3390/ijms12010633.
6
Biosurfactant: A new frontier for greener technology and environmental sustainability.
Ecotoxicol Environ Saf. 2019 Nov 30;184:109607. doi: 10.1016/j.ecoenv.2019.109607. Epub 2019 Sep 7.
7
Biological Nanofactories: Using Living Forms for Metal Nanoparticle Synthesis.
Mini Rev Med Chem. 2021;21(2):245-265. doi: 10.2174/1389557520999201116163012.
9
A nonspecific synergistic effect of biogenic silver nanoparticles and biosurfactant towards environmental bacteria and fungi.
Ecotoxicology. 2018 Apr;27(3):352-359. doi: 10.1007/s10646-018-1899-3. Epub 2018 Feb 6.
10
Biosurfactants in agriculture.
Appl Microbiol Biotechnol. 2013 Feb;97(3):1005-16. doi: 10.1007/s00253-012-4641-8. Epub 2013 Jan 3.

引用本文的文献

2
Green synthesis of Ag, Se, and AgSe nanoparticles by Pseudomonas aeruginosa: characterization and their biological and photocatalytic applications.
Folia Microbiol (Praha). 2024 Jun;69(3):625-638. doi: 10.1007/s12223-023-01100-9. Epub 2023 Nov 2.
3
Isolation of recombinant apolipoprotein E4 N-terminal domain by foam fractionation.
Protein Expr Purif. 2023 Oct;210:106319. doi: 10.1016/j.pep.2023.106319. Epub 2023 Jun 6.
4
Design of TiO-Based Hybrid Systems with Multifunctional Properties.
Molecules. 2023 Feb 16;28(4):1863. doi: 10.3390/molecules28041863.
5
Isolation and chemical characterization of the biosurfactant produced by Gordonia sp. IITR100.
PLoS One. 2022 Apr 14;17(4):e0264202. doi: 10.1371/journal.pone.0264202. eCollection 2022.
6
Microemulsion Microstructure(s): A Tutorial Review.
Nanomaterials (Basel). 2020 Aug 24;10(9):1657. doi: 10.3390/nano10091657.

本文引用的文献

2
Zinc oxide nanoparticles mediated cytotoxicity, mitochondrial membrane potential and level of antioxidants in presence of melatonin.
Int J Biol Macromol. 2017 Oct;103:808-818. doi: 10.1016/j.ijbiomac.2017.05.088. Epub 2017 May 17.
3
Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent: Growth mechanism and photo-catalytic activity evaluation.
Int J Biol Macromol. 2017 Oct;103:783-790. doi: 10.1016/j.ijbiomac.2017.05.023. Epub 2017 May 8.
4
Functional characterization of biomedical potential of biosurfactant produced by .
Biotechnol Rep (Amst). 2016 May 24;11:27-35. doi: 10.1016/j.btre.2016.05.001. eCollection 2016 Sep.
6
Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications.
Biomed Pharmacother. 2016 Dec;84:1213-1222. doi: 10.1016/j.biopha.2016.10.038. Epub 2016 Oct 24.
8
ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells.
Toxicol In Vitro. 2016 Sep;35:169-79. doi: 10.1016/j.tiv.2016.06.005. Epub 2016 Jun 16.
9
Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry.
Bioresour Technol. 2016 Aug;213:262-269. doi: 10.1016/j.biortech.2016.02.091. Epub 2016 Mar 9.
10
Biosurfactants: Multifunctional Biomolecules of the 21st Century.
Int J Mol Sci. 2016 Mar 18;17(3):401. doi: 10.3390/ijms17030401.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验