Suppr超能文献

在一项决策任务中,预测错误的神经特征受动作执行失败的调节。

Neural Signatures of Prediction Errors in a Decision-Making Task Are Modulated by Action Execution Failures.

机构信息

Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94704, USA.

Department of Psychology, Princeton University, South Drive, Princeton, NJ 08540, USA.

出版信息

Curr Biol. 2019 May 20;29(10):1606-1613.e5. doi: 10.1016/j.cub.2019.04.011. Epub 2019 May 2.

Abstract

Decisions must be implemented through actions, and actions are prone to error. As such, when an expected outcome is not obtained, an individual should be sensitive to not only whether the choice itself was suboptimal but also whether the action required to indicate that choice was executed successfully. The intelligent assignment of credit to action execution versus action selection has clear ecological utility for the learner. To explore this, we used a modified version of a classic reinforcement learning task in which feedback indicated whether negative prediction errors were, or were not, associated with execution errors. Using fMRI, we asked if prediction error computations in the human striatum, a key substrate in reinforcement learning and decision making, are modulated when a failure in action execution results in the negative outcome. Participants were more tolerant of non-rewarded outcomes when these resulted from execution errors versus when execution was successful, but reward was withheld. Consistent with this behavior, a model-driven analysis of neural activity revealed an attenuation of the signal associated with negative reward prediction errors in the striatum following execution failures. These results converge with other lines of evidence suggesting that prediction errors in the mesostriatal dopamine system integrate high-level information during the evaluation of instantaneous reward outcomes.

摘要

决策必须通过行动来实施,而行动容易出错。因此,当没有得到预期的结果时,个体不仅应该敏感地意识到选择本身是否不够理想,还应该意识到指示该选择所需的行动是否成功执行。将信用分配给行动执行与行动选择对于学习者具有明显的生态效用。为了探索这一点,我们使用了经典强化学习任务的修改版本,其中反馈表明负预测误差是否与执行错误相关。使用 fMRI,我们询问在人类纹状体(强化学习和决策的关键基质)中的预测误差计算是否在执行失败导致负面结果时受到调制。当非奖励结果是由于执行错误而不是执行成功但奖励被拒绝时,参与者对其的容忍度更高。与该行为一致,对神经活动的模型驱动分析表明,在执行失败后,纹状体中与负奖励预测误差相关的信号减弱。这些结果与其他表明中脑多巴胺系统中的预测误差在评估即时奖励结果时整合高层信息的证据一致。

相似文献

3
Credit assignment in movement-dependent reinforcement learning.运动依赖型强化学习中的信用分配
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6797-802. doi: 10.1073/pnas.1523669113. Epub 2016 May 31.
8
Causal Inference Gates Corticostriatal Learning.因果推理门控皮质纹状体学习。
J Neurosci. 2021 Aug 11;41(32):6892-6904. doi: 10.1523/JNEUROSCI.2796-20.2021. Epub 2021 Jul 9.
9
Neuronal basis for evaluating selected action in the primate striatum.灵长类纹状体中评估选定动作的神经元基础。
Eur J Neurosci. 2011 Aug;34(3):489-506. doi: 10.1111/j.1460-9568.2011.07771.x. Epub 2011 Jul 22.

引用本文的文献

2
Reaching vigor tracks learned prediction error.达到活力追踪学习到的预测误差。
bioRxiv. 2025 Mar 25:2025.03.24.645035. doi: 10.1101/2025.03.24.645035.
6
Functional neuroimaging as a catalyst for integrated neuroscience.功能神经影像学:整合神经科学的催化剂。
Nature. 2023 Nov;623(7986):263-273. doi: 10.1038/s41586-023-06670-9. Epub 2023 Nov 8.
8
The Role of Executive Function in Shaping Reinforcement Learning.执行功能在塑造强化学习中的作用。
Curr Opin Behav Sci. 2021 Apr;38:66-73. doi: 10.1016/j.cobeha.2020.10.003. Epub 2020 Nov 14.

本文引用的文献

2
Model-based predictions for dopamine.基于模型的多巴胺预测。
Curr Opin Neurobiol. 2018 Apr;49:1-7. doi: 10.1016/j.conb.2017.10.006. Epub 2017 Oct 31.
4
Working Memory Load Strengthens Reward Prediction Errors.工作记忆负荷增强奖励预测误差。
J Neurosci. 2017 Apr 19;37(16):4332-4342. doi: 10.1523/JNEUROSCI.2700-16.2017. Epub 2017 Mar 20.
6
Credit assignment in movement-dependent reinforcement learning.运动依赖型强化学习中的信用分配
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6797-802. doi: 10.1073/pnas.1523669113. Epub 2016 May 31.
7
10
Do learning rates adapt to the distribution of rewards?学习率会适应奖励的分布吗?
Psychon Bull Rev. 2015 Oct;22(5):1320-7. doi: 10.3758/s13423-014-0790-3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验