Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA.
Northeast Ohio Medical University, Rootstown, OH, USA.
J Shoulder Elbow Surg. 2019 Jul;28(7):1249-1256. doi: 10.1016/j.jse.2018.12.009. Epub 2019 May 2.
This study tested validity and efficiency of Orthopaedic Minimal Data Set (OrthoMiDaS) Episode of Care (OME).
We analyzed 100 isolated rotator cuff repair cases in the OME database. Surgeons completed a traditional operative note and OME report. A blinded reviewer extracted data from operative notes and implant logs in electronic medical records by manual chart review. OME and electronic medical record data were compared with data counts and agreement between 40 variables of rotator cuff disease and repair procedures. Data counts were assessed using raw percentages and McNemar test (with continuity correction). Agreement of categorical variables was analyzed using Cohen κ (unweighted) and of numerical variables using the concordance correlation coefficient (CCC). Efficiency was assessed by median time to complete.
OME database had significantly higher data counts for 25% (10/40) of variables. A high level of proportional and statistical agreement was demonstrated between the data. Among 35 categorical variables, proportional agreement was perfect for 17%, almost perfect (0.81 ≤ κ ≤ 1.00) for 37%, substantial (0.61 ≤ κ ≤ 0.80) for 20%, moderate (0.41 ≤ κ ≤ 0.60) for 14%, fair (0.21 ≤ κ ≤ 0.40) for 6%, and slight (0.0 ≤ κ ≤ 0.20) for 6%. Of 5 numerical variables, agreement was almost perfect (CCC > 0.99) for 20% and poor (CCC < 0.90) for 80%. Median OME completion time was 161.5 seconds (interquartile range, 116-224.5).
OME is an efficient, valid tool for collecting comprehensive, standardized data on rotator cuff repair.
本研究测试了骨科最小数据集(OrthoMiDaS)的治疗单元(OME)的有效性和效率。
我们分析了 OME 数据库中的 100 例孤立的肩袖修复病例。外科医生完成了传统的手术记录和 OME 报告。一位盲审员通过手动图表审查从电子病历中的手术记录和植入物日志中提取数据。OME 和电子病历数据与数据计数以及 40 个肩袖疾病和修复程序变量的一致性进行了比较。数据计数采用原始百分比和 McNemar 检验(带连续性校正)进行评估。分类变量的一致性采用 Cohen κ(未加权)和数值变量的一致性相关系数(CCC)进行分析。通过完成中位数时间评估效率。
OME 数据库在 40 个变量中的 25%(10/40)具有显著更高的数据计数。数据之间表现出高度的比例和统计学一致性。在 35 个分类变量中,17%的比例完全一致,37%的比例几乎完全一致(0.81≤κ≤1.00),20%的比例高度一致(0.61≤κ≤0.80),14%的比例中度一致(0.41≤κ≤0.60),6%的比例适度一致(0.21≤κ≤0.40),6%的比例轻微一致(0.0≤κ≤0.20)。在 5 个数值变量中,20%的一致性几乎完全一致(CCC>0.99),80%的一致性较差(CCC<0.90)。OME 的中位数完成时间为 161.5 秒(四分位间距,116-224.5)。
OME 是一种高效、有效的工具,可用于收集肩袖修复的全面、标准化数据。