Suppr超能文献

DeviaTE:无需组装的移动遗传元件组成分析和可视化。

DeviaTE: Assembly-free analysis and visualization of mobile genetic element composition.

机构信息

Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria.

出版信息

Mol Ecol Resour. 2019 Sep;19(5):1346-1354. doi: 10.1111/1755-0998.13030. Epub 2019 Jul 3.

Abstract

Transposable elements (TEs) are selfish DNA sequences that multiply within host genomes. They are present in most species investigated so far at varying degrees of abundance and sequence diversity. The TE composition may not only vary between but also within species and could have important biological implications. Variation in prevalence among populations may for example indicate a recent TE invasion, whereas sequence variation could indicate the presence of hyperactive or inactive forms. Gaining unbiased estimates of TE composition is thus vital for understanding the evolutionary dynamics of transposons. To this end, we developed DeviaTE, a tool to analyse and visualize TE abundance using Illumina or Sanger sequencing reads. Our tool requires sequencing reads of one or more samples (tissue, individual or population) and consensus sequences of TEs. It generates a table and a visual representation of TE composition. This allows for an intuitive assessment of coverage, sequence divergence, segregating SNPs and indels, as well as the presence of internal and terminal deletions. By contrasting the coverage between TEs and single copy genes, DeviaTE derives unbiased estimates of TE abundance. We show that naive approaches, which do not consider regions spanned by internal deletions, may substantially underestimate TE abundance. Using published data we demonstrate that DeviaTE can be used to study the TE composition within samples, identify clinal variation in TEs, compare TE diversity among species, and monitor TE invasions. Finally we present careful validations with publicly available and simulated data. DeviaTE is implemented in Python and distributed under the GPLv3 (https://github.com/W-L/deviaTE).

摘要

转座元件 (TEs) 是一种自私的 DNA 序列,它们在宿主基因组中大量繁殖。到目前为止,在大多数经过调查的物种中,都存在着不同程度的丰度和序列多样性的转座元件。TE 的组成不仅在不同物种之间可能有所不同,在同一物种内也可能有所不同,并且可能具有重要的生物学意义。例如,种群之间流行率的差异可能表明最近发生了 TE 入侵,而序列变异则可能表明存在活跃或不活跃的形式。因此,获得对 TE 组成的无偏估计对于理解转座子的进化动态至关重要。为此,我们开发了 DeviaTE,这是一种使用 Illumina 或 Sanger 测序reads 分析和可视化 TE 丰度的工具。我们的工具需要一个或多个样本(组织、个体或种群)的测序 reads 和 TEs 的共识序列。它生成一个表格和 TE 组成的可视化表示。这允许直观地评估覆盖度、序列分歧、分离的 SNPs 和插入缺失、以及内部和末端缺失的存在。通过比较 TE 和单拷贝基因之间的覆盖度,DeviaTE 可以得出 TE 丰度的无偏估计。我们表明,不考虑内部缺失所跨越的区域的简单方法可能会大大低估 TE 的丰度。使用已发表的数据,我们证明 DeviaTE 可用于研究样本中的 TE 组成、识别 TE 中的渐变变异、比较物种间的 TE 多样性以及监测 TE 入侵。最后,我们使用公开可用的数据和模拟数据进行了仔细的验证。DeviaTE 是用 Python 编写的,并在 GPLv3 下发布(https://github.com/W-L/deviaTE)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f084/6791034/ec7153361daa/MEN-19-1346-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验