Suppr超能文献

溶瘤单纯疱疹病毒治疗增加了曲美替尼进入脑肿瘤的机会,并在体内使它们敏化。

Oncolytic HSV therapy increases trametinib access to brain tumors and sensitizes them in vivo.

机构信息

Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas.

Rice University, Houston, Texas.

出版信息

Neuro Oncol. 2019 Sep 6;21(9):1131-1140. doi: 10.1093/neuonc/noz079.

Abstract

BACKGROUND

Hyperactivation of the RAS-RAF-MEK-ERK signaling pathway is exploited by glioma cells to promote their growth and evade apoptosis. MEK activation in tumor cells can increase replication of ICP34.5-deleted herpes simplex virus type 1 (HSV-1), but paradoxically its activation in tumor-associated macrophages promotes a pro-inflammatory signaling that can inhibit virus replication and propagation. Here we investigated the effect of blocking MEK signaling in conjunction with oncolytic HSV-1 (oHSV) for brain tumors.

METHODS

Infected glioma cells co-cultured with microglia or macrophages treated with or without trametinib were used to test trametinib effect on macrophages/microglia. Enzyme-linked immunosorbent assay, western blotting, and flow cytometry were utilized to evaluate the effect of the combination therapy. Pharmacokinetic (PK) analysis of mouse plasma and brain tissue was used to evaluate trametinib delivery to the CNS. Intracranial human and mouse glioma-bearing immune deficient and immune competent mice were used to evaluate the antitumor efficacy.

RESULT

Oncolytic HSV treatment rescued trametinib-mediated feedback reactivation of the mitogen-activated protein kinase signaling pathway in glioma. In vivo, PK analysis revealed enhanced blood-brain barrier penetration of trametinib after oHSV treatment. Treatment by trametinib, a MEK kinase inhibitor, led to a significant reduction in microglia- and macrophage-derived tumor necrosis factor alpha (TNFα) secretion in response to oHSV treatment and increased survival of glioma-bearing mice. Despite the reduced TNFα production observed in vivo, the combination treatment activated CD8+ T-cell mediated immunity and increased survival in a glioma-bearing immune-competent mouse model.

CONCLUSION

This study provides a rationale for combining oHSV with trametinib for the treatment of brain tumors.

摘要

背景

RAS-RAF-MEK-ERK 信号通路的过度激活被神经胶质瘤细胞利用,以促进其生长并逃避凋亡。肿瘤细胞中 MEK 的激活可以增加 ICP34.5 缺失的单纯疱疹病毒 1(HSV-1)的复制,但矛盾的是,它在肿瘤相关巨噬细胞中的激活促进了一种促炎信号,可抑制病毒的复制和传播。在这里,我们研究了阻断 MEK 信号与溶瘤单纯疱疹病毒 1(oHSV)联合用于脑肿瘤的效果。

方法

用微胶质细胞或巨噬细胞共培养感染的神经胶质瘤细胞,用或不用 trametinib 处理,以测试 trametinib 对巨噬细胞/小胶质细胞的影响。酶联免疫吸附试验、Western 印迹和流式细胞术用于评估联合治疗的效果。利用小鼠血浆和脑组织的药代动力学(PK)分析来评估 trametinib 递送到中枢神经系统的情况。用颅内携带人类和小鼠神经胶质瘤的免疫缺陷和免疫功能正常的小鼠来评估抗肿瘤疗效。

结果

溶瘤单纯疱疹病毒治疗挽救了 trametinib 介导的丝裂原活化蛋白激酶信号通路在神经胶质瘤中的反馈再激活。在体内,PK 分析显示,在 oHSV 治疗后,tramet inib 的血脑屏障穿透能力增强。MEK 激酶抑制剂 trametinib 的治疗导致 oHSV 治疗后巨噬细胞和小胶质细胞衍生的肿瘤坏死因子-α(TNFα)分泌显著减少,并提高了神经胶质瘤荷瘤小鼠的存活率。尽管体内观察到 TNFα 产生减少,但联合治疗激活了 CD8+T 细胞介导的免疫,并提高了免疫功能正常的神经胶质瘤荷瘤小鼠的存活率。

结论

这项研究为 oHSV 与 trametinib 联合治疗脑肿瘤提供了一个合理的依据。

相似文献

1
Oncolytic HSV therapy increases trametinib access to brain tumors and sensitizes them in vivo.
Neuro Oncol. 2019 Sep 6;21(9):1131-1140. doi: 10.1093/neuonc/noz079.
2
The Impact of Macrophage- and Microglia-Secreted TNFα on Oncolytic HSV-1 Therapy in the Glioblastoma Tumor Microenvironment.
Clin Cancer Res. 2015 Jul 15;21(14):3274-85. doi: 10.1158/1078-0432.CCR-14-3118. Epub 2015 Mar 31.
5
Targeting IGF2 to reprogram the tumor microenvironment for enhanced viro-immunotherapy.
Neuro Oncol. 2024 Sep 5;26(9):1602-1616. doi: 10.1093/neuonc/noae105.
6
Oncolytic HSV-Infected Glioma Cells Activate NOTCH in Adjacent Tumor Cells Sensitizing Tumors to Gamma Secretase Inhibition.
Clin Cancer Res. 2020 May 15;26(10):2381-2392. doi: 10.1158/1078-0432.CCR-19-3420. Epub 2020 Mar 5.
8
Enhancing Therapeutic Efficacy of Oncolytic Herpes Simplex Virus-1 with Integrin β1 Blocking Antibody OS2966.
Mol Cancer Ther. 2019 Jun;18(6):1127-1136. doi: 10.1158/1535-7163.MCT-18-0953. Epub 2019 Mar 29.
9
BAI1 Orchestrates Macrophage Inflammatory Response to HSV Infection-Implications for Oncolytic Viral Therapy.
Clin Cancer Res. 2017 Apr 1;23(7):1809-1819. doi: 10.1158/1078-0432.CCR-16-1818. Epub 2016 Nov 9.
10
An oncolytic HSV-1 vector induces a therapeutic adaptive immune response against glioblastoma.
J Transl Med. 2024 Sep 27;22(1):862. doi: 10.1186/s12967-024-05650-5.

引用本文的文献

1
Oncolytic Therapies for Glioblastoma: Advances, Challenges, and Future Perspectives.
Cancers (Basel). 2025 Aug 1;17(15):2550. doi: 10.3390/cancers17152550.
2
Oncolytic immunovirotherapy: finding the tumor antigen needle in the antiviral haystack.
Immunotherapy. 2025 Jun;17(8):585-594. doi: 10.1080/1750743X.2025.2513853. Epub 2025 Jun 6.
4
Metabolism: an important player in glioma survival and development.
Discov Oncol. 2024 Oct 22;15(1):577. doi: 10.1007/s12672-024-01402-5.
5
Advances in antitumour therapy with oncolytic herpes simplex virus combinations.
Discov Oncol. 2024 Jul 24;15(1):302. doi: 10.1007/s12672-024-01165-z.
6
Low-frequency magnetic field therapy for glioblastoma: Current advances, mechanisms, challenges and future perspectives.
J Adv Res. 2025 Mar;69:531-543. doi: 10.1016/j.jare.2024.03.024. Epub 2024 Mar 31.
7
Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells.
Front Cell Infect Microbiol. 2023 May 31;13:1206111. doi: 10.3389/fcimb.2023.1206111. eCollection 2023.
8
Cell-based and cell-free immunotherapies for glioblastoma: current status and future directions.
Front Immunol. 2023 May 25;14:1175118. doi: 10.3389/fimmu.2023.1175118. eCollection 2023.
9
Immunosuppressive cells in oncolytic virotherapy for glioma: challenges and solutions.
Front Cell Infect Microbiol. 2023 May 10;13:1141034. doi: 10.3389/fcimb.2023.1141034. eCollection 2023.
10
Oncolytic virotherapy: basic principles, recent advances and future directions.
Signal Transduct Target Ther. 2023 Apr 11;8(1):156. doi: 10.1038/s41392-023-01407-6.

本文引用的文献

1
Suppression of HMGB1 Released in the Glioblastoma Tumor Microenvironment Reduces Tumoral Edema.
Mol Ther Oncolytics. 2018 Dec 6;12:93-102. doi: 10.1016/j.omto.2018.11.005. eCollection 2019 Mar 29.
2
Magnitude of Therapeutic STING Activation Determines CD8 T Cell-Mediated Anti-tumor Immunity.
Cell Rep. 2018 Dec 11;25(11):3074-3085.e5. doi: 10.1016/j.celrep.2018.11.047.
4
BRAF and MEK Inhibitors Increase PD-1-Positive Melanoma Cells Leading to a Potential Lymphocyte-Independent Synergism with Anti-PD-1 Antibody.
Clin Cancer Res. 2018 Jul 15;24(14):3377-3385. doi: 10.1158/1078-0432.CCR-17-1914. Epub 2018 Apr 12.
5
Antiangiogenic Therapy of High-Grade Gliomas.
Prog Neurol Surg. 2018;31:180-199. doi: 10.1159/000467379. Epub 2018 Jan 25.
7
Oncolytic Virotherapy Blockade by Microglia and Macrophages Requires STAT1/3.
Cancer Res. 2018 Feb 1;78(3):718-730. doi: 10.1158/0008-5472.CAN-17-0599. Epub 2017 Nov 8.
9
Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells.
Front Pharmacol. 2017 May 16;8:270. doi: 10.3389/fphar.2017.00270. eCollection 2017.
10
Kinase Regulation of Human MHC Class I Molecule Expression on Cancer Cells.
Cancer Immunol Res. 2016 Nov;4(11):936-947. doi: 10.1158/2326-6066.CIR-16-0177. Epub 2016 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验