Suppr超能文献

通过精氨酸手指和通道手性控制不对称六聚体纳米马达的旋转和转动运动方向。

Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality.

出版信息

ACS Nano. 2019 Jun 25;13(6):6207-6223. doi: 10.1021/acsnano.8b08849. Epub 2019 May 28.

Abstract

Nanomotors in nanotechnology are as important as engines in daily life. Many ATPases are nanoscale biomotors classified into three categories based on the motion mechanisms in transporting substrates: linear, rotating, and the recently discovered revolving motion. Most biomotors adopt a multisubunit ring-shaped structure that hydrolyzes ATP to generate force. How these biomotors control the motion direction and regulate the sequential action of their multiple subunits is intriguing. Many ATPases are hexameric with each monomer containing a conserved arginine finger. This review focuses on recent findings on how the arginine finger controls motion direction and coordinates adjacent subunit interactions in both revolving and rotating biomotors. Mechanisms of intersubunit interactions and sequential movements of individual subunits are evidenced by the asymmetrical appearance of one dimer and four monomers in high-resolution structural complexes. The arginine finger is situated at the interface of two subunits and extends into the ATP binding pocket of the downstream subunit. An arginine finger mutation results in deficiency in ATP binding/hydrolysis, substrate binding, and transport, highlighting the importance of the arginine finger in regulating energy transduction and motor function. Additionally, the roles of channel chirality and channel size are discussed as related to controlling one-way trafficking and differentiating the revolving and rotating mechanisms. Finally, the review concludes by discussing the conformational changes and entropy conversion triggered by ATP binding/hydrolysis, offering a view different from the traditional concept of ATP-mediated mechanochemical energy coupling. The elucidation of the motion mechanism and direction control in ATPases could facilitate nanomotor fabrication in nanotechnology.

摘要

纳米技术中的纳米马达与日常生活中的发动机一样重要。许多 ATP 酶是基于转运底物的运动机制分类的纳米级生物马达,分为线性、旋转和最近发现的旋转运动三类。大多数生物马达采用多亚基环形结构,通过水解 ATP 产生力。这些生物马达如何控制运动方向并调节其多个亚基的顺序作用是一个有趣的问题。许多 ATP 酶是六聚体,每个单体都含有一个保守的精氨酸指。本综述重点介绍了精氨酸指如何控制旋转和旋转生物马达中运动方向和协调相邻亚基相互作用的最新发现。通过高分辨率结构复合物中一个二聚体和四个单体的不对称外观,可以证明亚基间相互作用和单个亚基的顺序运动的机制。精氨酸指位于两个亚基的界面处,并延伸到下游亚基的 ATP 结合口袋中。精氨酸指突变会导致 ATP 结合/水解、底物结合和转运缺陷,突出了精氨酸指在调节能量转导和马达功能中的重要性。此外,还讨论了通道手性和通道大小的作用,因为它们与控制单向运输和区分旋转和旋转机制有关。最后,通过讨论 ATP 结合/水解引发的构象变化和熵转换,得出了与传统的 ATP 介导的机械化学能量偶联概念不同的观点。阐明 ATP 酶中的运动机制和方向控制可以促进纳米技术中的纳米马达制造。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f911/6595433/208c044c7104/nn-2018-088498_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验